欢迎来到天天文库
浏览记录
ID:42810947
大小:42.23 KB
页数:4页
时间:2019-09-23
《24.2.1 点和圆的位置关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题24.2.1点和圆的位置关系课时安排4课时第1课时授课类型新授课教学目标设计·知识与技能理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d2、难点·教学重点点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.·教学难点讲授反证法的证明思路.教学方法(学法)探索、归纳、讲练结合.教具准备PPT课件。教学过程设计一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)3、圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知: 设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外d>r点P在圆上d=r点P在圆内dr点P在圆外;如果d=r点P在圆上;如果dr点P在圆上d=r点P在圆内d4、究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,5、都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.(1)(2)(3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示. 在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.即:不在同一直线上的三个点确定一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三6、角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,即点P为L1与L2点,而L1⊥L,L2⊥L,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛7、盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心.作法:(1)在残缺的圆盘上任取三点连结成两条线段;(2)作两线段的中垂线,相交于一点.则O就为所求的圆心.三、巩固练习教材P100练习1、2、3、4.四、应用拓展例2.如图,已知梯形ABCD中,AB∥CD,AD=BC,AB=48、8cm,CD=30cm,
2、难点·教学重点点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.·教学难点讲授反证法的证明思路.教学方法(学法)探索、归纳、讲练结合.教具准备PPT课件。教学过程设计一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)
3、圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知: 设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外d>r点P在圆上d=r点P在圆内dr点P在圆外;如果d=r点P在圆上;如果dr点P在圆上d=r点P在圆内d4、究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,5、都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.(1)(2)(3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示. 在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.即:不在同一直线上的三个点确定一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三6、角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,即点P为L1与L2点,而L1⊥L,L2⊥L,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛7、盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心.作法:(1)在残缺的圆盘上任取三点连结成两条线段;(2)作两线段的中垂线,相交于一点.则O就为所求的圆心.三、巩固练习教材P100练习1、2、3、4.四、应用拓展例2.如图,已知梯形ABCD中,AB∥CD,AD=BC,AB=48、8cm,CD=30cm,
4、究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,
5、都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.(1)(2)(3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示. 在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.即:不在同一直线上的三个点确定一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三
6、角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,即点P为L1与L2点,而L1⊥L,L2⊥L,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛
7、盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心.作法:(1)在残缺的圆盘上任取三点连结成两条线段;(2)作两线段的中垂线,相交于一点.则O就为所求的圆心.三、巩固练习教材P100练习1、2、3、4.四、应用拓展例2.如图,已知梯形ABCD中,AB∥CD,AD=BC,AB=4
8、8cm,CD=30cm,
此文档下载收益归作者所有