欢迎来到天天文库
浏览记录
ID:42322800
大小:234.21 KB
页数:5页
时间:2019-09-12
《一元二次函数经典习题集_免费下载》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、例2已知关于的方程是一元二次方程时,则知识点三一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当时,所以是方程的解。一元二次方程的解也叫一元二次方程的根。知识点四建立一元二次方程模型建立一元二次方程模型的步骤是:审题、设未知数、列方程。注意:(1)审题过程是找出已知量、未知量及等量关系;(2)设未知数要带单位;(3)建立一元二次方程模型的关键是依题意找出等量关系。例如图(1),有一个面积为150㎡的长方形鸡场,鸡场一边靠墙(墙长18m),另三边用竹篱笆围成,若竹篱笆的长为35m,求鸡场的长和宽各为多少?鸡场(只设未知数,列出方程,并
2、将它化成一般形式。)因式分解法、直接开平方法知识点一因式分解法解一元二次方程如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即若pq=0时,则p=0或q=0。用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。(3)令每个因式分别为0,得两个一元一次方程。(4)解这两个一元一次方程,它们的解就是原方程的解。关键点:(1)要将方程右边化为0;(2)熟练掌握多项式因式分解的方法,常用方法有:提公式法,公式法(平方差公式,完全平方公式)等。例用因式分解法解下列方程:(1);(2);(3)。知识
3、点二直接开平方法解一元二次方程若,则叫做a的平方根,表示为,这种解一元二次方程的方法叫做直接开平方法。(1)的解是;(2)的解是;(3)的解是。例用直接开平方法解下列一元二次方程(1);(2);(3)知识点三灵活运用因式分解法和直接开平方法解一元二次方程形如的方程,既可用因式分解法分解,也可用直接开平方法解。例运用因式分解法和直接开平方法解下列一元二次方程。(1);(2)知识点四用提公因式法解一元二次方程把方程左边的多项式(方程右边为0时)的公因式提出,将多项式写出因式的乘积形式,然后利用“若pq=0时,则p=0或q=0”来解一元二次方程的方法,称为
4、提公因式法。如:,将原方程变形为,由此可得出注意:在解方程时,千万注意不能把方程两边都同时除以一个含有未知数的式子,否则可能丢失原方程的根。知识点五形如“”的方程的解法。对于形如“”的方程(或通过整理符合其形式的),可将左边分解因式,方程变形为,则,即。注意:应用这种方法解一元二次方程时,要熟悉“”型方程的特征。例解下列方程:(1);(2)配方法知识点一配方法解一元二次方程时,在方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种方法叫做配方,配方后就可以用因式分解法或直接开平方法了,这样解一元二次方程的方法叫做
5、配方法。注意:用配方法解一元二次方程,当对方程的左边配方时,一定记住在方程的左边加上一次项系数的一半的平方后,还要再减去这个数。例用配方法解下列方程:(1);(2)知识点二用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)在方程的左边加上一次项系数的一半的平方,再减去这个数;(2)把原方程变为的形式。(3)若,用直接开平方法求出的值,若n﹤0,原方程无解。例解下列方程:知识点三用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为时,用配方法解一元二次方程的步骤:(1)先把二次项的系数化为1:方程的左、
6、右两边同时除以二项的系数;(2)移项:在方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为的形式;(3)若,用直接开平方法或因式分解法解变形后的方程。例用配方法解下列方程:(1);(2)公式法知识点一一元二次方程的求根公式一元二次方程的求根公式是:用求根公式法解一元二次方程的步骤是:(1)把方程化为的形式,确定的值(注意符号);(2)求出的值;(3)若,则把及的值代人求根公式,求出。例用公式法解下列方程(1);(2);(3)知识点二选择适合的方法解一元二次方程直接开平方法用于解左边的含有未知数的平方式,右边是一个非负数或也是一个含未知数
7、的平方式的方程因式分解要求方程右边必须是0,左边能分解因式;公式法是由配方法推导而来的,要比配方法简单。注意:一元二次方程解法的选择,应遵循先特殊,再一般,即先考虑能否用直接开平方法或因式分解法,不能用这两种特殊方法时,再选用公式法,没有特殊要求,一般不采用配方法,因为配方法解题比较麻烦。例用适当的方法解下列一元二次方程:(1);(2);(3)知识点三一元二次方程根的判别式一元二次方程根的判别式△=运用根的判别式,不解方程,就可以判定一元二次方程的根的情况:(1)△=﹥0方程有两个不相等的实数根;(1)△==0方程有两个相等的实数根;(2)△=﹤0方
8、程没有实数根;利用根的判别式判定一元二次方程根的情况的步骤:①把所有一元二次方程化为一般形式;②确定的值;③
此文档下载收益归作者所有