~4.5函数的极值与最大最小值

~4.5函数的极值与最大最小值

ID:41371792

大小:1.22 MB

页数:29页

时间:2019-08-23

~4.5函数的极值与最大最小值_第1页
~4.5函数的极值与最大最小值_第2页
~4.5函数的极值与最大最小值_第3页
~4.5函数的极值与最大最小值_第4页
~4.5函数的极值与最大最小值_第5页
资源描述:

《~4.5函数的极值与最大最小值》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五节函数的极值与最大最小值一、函数极值及其求法二、最大最小值问题三、小结一、单调性的判别法定理证应用拉氏定理,得例1解注意:函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性.二、函数的极值及其求法1、函数极值的定义定义函数的极大值与极小值统称为极值,使函数取得极值的点称为极值点.定理1(必要条件)定义注意:函数的极值点必是函数的驻点或导数不存在的点,但是,驻点或导数不存在的点不一定就是函数的极值点。例如,2、函数极值的求法定理2(第一充分条件)(是极值点情形)求极值的步骤:(不是极值点情形)例1解列表讨

2、论极大值极小值图形如下定理3(第二充分条件)证同理可证(2).例2解图形如下注意:例3解注意:函数的不可导点,也可能是函数的极值点.三、最值的求法步骤:1.求驻点和不可导点;2.求区间端点及驻点和不可导点的函数值,比较大小,那个大那个就是最大值,那个小那个就是最小值;注意:如果区间内只有一个极值,则这个极值就是最值.(最大值或最小值)四、应用举例例1解计算比较得实际问题求最值应注意:(1)建立目标函数;(2)求最值;点击图片任意处播放暂停例2敌人乘汽车从河的北岸A处以1千米/分钟的速度向正北逃窜,同时我军摩托车从河的南岸B处向正东追击,速度为2千米/分钟.问我军摩托车

3、何时射击最好(相距最近射击最好)?解(1)建立敌我相距函数关系敌我相距函数得唯一驻点点击图片任意处播放暂停例4解如图,解得练习题1练习题1答案练习题2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。