Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)

Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)

ID:40722342

大小:1.28 MB

页数:114页

时间:2019-08-06

Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)_第1页
Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)_第2页
Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)_第3页
Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)_第4页
Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)_第5页
资源描述:

《Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LooseEndsNon-SmoothNon-FiniteNon-ConvexNon-Smooth,Non-Finite,andNon-ConvexOptimizationDeepLearningSummerSchoolMarkSchmidtUniversityofBritishColumbiaAugust2015LooseEndsNon-SmoothNon-FiniteNon-ConvexComplex-StepDerivativeUsingcomplexnumbertocomputedirec

2、tionalderivatives:Theusual nite-di erenceapproximationofderivative:0f(x+h)f(x)f(x):hHasO(h2)errorfromTaylorexpansion,f(x+h)=f(x)+hf0(x)+O(h2);Buthcan'tbetoosmall:cancellationinf(x+h)f(x).LooseEndsNon-SmoothNon-FiniteNon-ConvexComplex-StepDerivative

3、Usingcomplexnumbertocomputedirectionalderivatives:Theusual nite-di erenceapproximationofderivative:0f(x+h)f(x)f(x):hHasO(h2)errorfromTaylorexpansion,f(x+h)=f(x)+hf0(x)+O(h2);Buthcan'tbetoosmall:cancellationinf(x+h)f(x).Foranalyticfunctions,thecompl

4、ex-stepderivativeuses:f(x+ih)=f(x)+ihf0(x)+O(h2);thatalsogivesfunctionandderivativetoaccuracyO(h2):2imag(f(x+ih))02real(f(x+ih))=f(x)+O(h);=f(x)+O(h);hLooseEndsNon-SmoothNon-FiniteNon-ConvexComplex-StepDerivativeUsingcomplexnumbertocomputedirectionald

5、erivatives:Theusual nite-di erenceapproximationofderivative:0f(x+h)f(x)f(x):hHasO(h2)errorfromTaylorexpansion,f(x+h)=f(x)+hf0(x)+O(h2);Buthcan'tbetoosmall:cancellationinf(x+h)f(x).Foranalyticfunctions,thecomplex-stepderivativeuses:f(x+ih)=f(x)+ihf0

6、(x)+O(h2);thatalsogivesfunctionandderivativetoaccuracyO(h2):2imag(f(x+ih))02real(f(x+ih))=f(x)+O(h);=f(x)+O(h);hbutnocancellationsousetinyh(e.g.,10150inminFunc).FirstappearanceisapparentlySquire&Trapp[1998].LooseEndsNon-SmoothNon-FiniteNon-ConvexSub

7、gradients"ofNon-ConvexfunctionsSub-gradientdoffunctionfatxhasf(y)f(x)+dT(yx);forallyandx.Sub-gradientsalwaysexistforreasonableconvexfunctions.LooseEndsNon-SmoothNon-FiniteNon-ConvexSubgradients"ofNon-ConvexfunctionsSub-gradientdoffunctionfatxhasf(y

8、)f(x)+dT(yx);forallyandx.Sub-gradientsalwaysexistforreasonableconvexfunctions.Clarkesubgradientorgeneralizedgradientdoffatxf(y)f(x)+dT(yx)kyxk2;forsome>0andallynearx[Clarke,1975].Existforreasonablenon-convexfunctions.LooseEndsNon-Smoot

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。