欢迎来到天天文库
浏览记录
ID:40722342
大小:1.28 MB
页数:114页
时间:2019-08-06
《Non-Smooth, Non-Finite, and Non-Convex Optimization(Mark Schmidt)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LooseEndsNon-SmoothNon-FiniteNon-ConvexNon-Smooth,Non-Finite,andNon-ConvexOptimizationDeepLearningSummerSchoolMarkSchmidtUniversityofBritishColumbiaAugust2015LooseEndsNon-SmoothNon-FiniteNon-ConvexComplex-StepDerivativeUsingcomplexnumbertocomputedirec
2、tionalderivatives:Theusualnite-dierenceapproximationofderivative:0f(x+h) f(x)f(x):hHasO(h2)errorfromTaylorexpansion,f(x+h)=f(x)+hf0(x)+O(h2);Buthcan'tbetoosmall:cancellationinf(x+h) f(x).LooseEndsNon-SmoothNon-FiniteNon-ConvexComplex-StepDerivative
3、Usingcomplexnumbertocomputedirectionalderivatives:Theusualnite-dierenceapproximationofderivative:0f(x+h) f(x)f(x):hHasO(h2)errorfromTaylorexpansion,f(x+h)=f(x)+hf0(x)+O(h2);Buthcan'tbetoosmall:cancellationinf(x+h) f(x).Foranalyticfunctions,thecompl
4、ex-stepderivativeuses:f(x+ih)=f(x)+ihf0(x)+O(h2);thatalsogivesfunctionandderivativetoaccuracyO(h2):2imag(f(x+ih))02real(f(x+ih))=f(x)+O(h);=f(x)+O(h);hLooseEndsNon-SmoothNon-FiniteNon-ConvexComplex-StepDerivativeUsingcomplexnumbertocomputedirectionald
5、erivatives:Theusualnite-dierenceapproximationofderivative:0f(x+h) f(x)f(x):hHasO(h2)errorfromTaylorexpansion,f(x+h)=f(x)+hf0(x)+O(h2);Buthcan'tbetoosmall:cancellationinf(x+h) f(x).Foranalyticfunctions,thecomplex-stepderivativeuses:f(x+ih)=f(x)+ihf0
6、(x)+O(h2);thatalsogivesfunctionandderivativetoaccuracyO(h2):2imag(f(x+ih))02real(f(x+ih))=f(x)+O(h);=f(x)+O(h);hbutnocancellationsousetinyh(e.g.,10 150inminFunc).FirstappearanceisapparentlySquire&Trapp[1998].LooseEndsNon-SmoothNon-FiniteNon-ConvexSub
7、gradients"ofNon-ConvexfunctionsSub-gradientdoffunctionfatxhasf(y)f(x)+dT(y x);forallyandx.Sub-gradientsalwaysexistforreasonableconvexfunctions.LooseEndsNon-SmoothNon-FiniteNon-ConvexSubgradients"ofNon-ConvexfunctionsSub-gradientdoffunctionfatxhasf(y
8、)f(x)+dT(y x);forallyandx.Sub-gradientsalwaysexistforreasonableconvexfunctions.Clarkesubgradientorgeneralizedgradientdoffatxf(y)f(x)+dT(y x) ky xk2;forsome>0andallynearx[Clarke,1975].Existforreasonablenon-convexfunctions.LooseEndsNon-Smoot
此文档下载收益归作者所有