Scalable Network Traffic Classification Using

Scalable Network Traffic Classification Using

ID:40375085

大小:797.19 KB

页数:5页

时间:2019-08-01

Scalable Network Traffic Classification Using_第1页
Scalable Network Traffic Classification Using_第2页
Scalable Network Traffic Classification Using_第3页
Scalable Network Traffic Classification Using_第4页
Scalable Network Traffic Classification Using_第5页
资源描述:

《Scalable Network Traffic Classification Using》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、2015IEEE8thInternationalConferenceonCloudComputingScalableNetworkTrafficClassificationUsingDistributedSupportVectorMachinesDoLeQuoc∗,ValerioD’Alessandro†,ByungchulPark§,LuigiRomano‡,ChristofFetzer∗∗DresdenUniversityofTechnology,Dresden,GermanyEmail:{do.lequoc,christof.fetzer}@tu-dresden.de†University

2、ofNaplesFedericoII,Naples,ItalyEmail:vale.dalessandro@studenti.unina.it‡ParthenopeUniversityofNaples,Naples,ItalyEmail:luigi.romano@uniparthenope.it§UniversityofToronto,Toronto,CanadaEmail:byungchul.park@utoronto.caAbstract—Internettraffichasincreaseddramaticallyinre-Overthelastfiveyears,thegrowthoft

3、heInternettrafficcentyearsduetothepopularizationoftheInternetandthevolumedemonstratesthenotionofBigData.ThisimpedesappearanceofwirelessInternetmobiledevicessuchassmart-theapplicationofSVMsindataminingbecausetheSVMsphonesandtablets.TheexplosivegrowthofInternettraffichasintroducedapracticalexamplethatd

4、emonstratestheconceptruntimecouldscaleapproximatelycubicallywiththenumberofBigData.Accurateidentificationandclassificationoflargeofobservationsinthelargetrainingdataset[15].Moreover,thenetworktrafficdataplaysanimportantroleinnetworkman-largedatasetsdonotfitintomemoryandevenintheharddiskagementincluding

5、capacityplanning,networkforensics,QoSofasinglemachine.ToovercometheproblemsofBigData,andintrusiondetection.However,thestate-of-the-artsolutions,theparallelanddistributedmethodsforSVMtraininghavewhichrelyonadedicatedserver,arenotscalableforanalyzinghighvolumenetworktrafficdata.Inthispaper,weimplement

6、beenintensivelystudied.ToreducethetimespentinkerneladistributedSupportVectorMachines(SVMs)frameworkforSVMtrainingonlarge-scaledatasets,Grafetal.[9]introducedclassifyingnetworktrafficusingHadoop,anopen-sourcedis-CascadeSVM,amultilevelapproach.Intheapproach,thetributedcomputingframeworkforBigDataproce

7、ssing.Weoriginaltrainingdatasetispartitionedintosubsets.Then,andesignaglobalparameterstorethatmaintainstheglobalsharedSVMisusedtotraineachsubsetusingthesameparametersasparametersbetweenSVMtrainingnodes.Thed

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。