Data Mining Techniques for Effective and Scalable Traffic Analysis

Data Mining Techniques for Effective and Scalable Traffic Analysis

ID:39358304

大小:365.62 KB

页数:14页

时间:2019-07-01

Data Mining Techniques for Effective and Scalable Traffic Analysis_第1页
Data Mining Techniques for Effective and Scalable Traffic Analysis_第2页
Data Mining Techniques for Effective and Scalable Traffic Analysis_第3页
Data Mining Techniques for Effective and Scalable Traffic Analysis_第4页
Data Mining Techniques for Effective and Scalable Traffic Analysis_第5页
资源描述:

《Data Mining Techniques for Effective and Scalable Traffic Analysis》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DataMiningTechniquesforEffectiveandScalableTrafficAnalysisM.Baldi,E.Baralis,F.RissoDipartimentodiAutomaticaeInformatica-PolitecnicodiTorinoCorsoDucadegliAbruzzi,2410129Torino,Italy{mario.baldi,elena.baralis,fulvio.risso}@polito.itAbstractThispaperdescribesa

2、novelapproachtotrafficanalysisinhighspeednetworksbasedondataminingtechniques.Dataminingtechniquesarehereappliedasameanstoeffectivelyprocessthesignificantamountofcaptureddata.Thepaperprovidesafirstevaluationoftheproposedapproachintermsofitsabilityofextractin

3、grelevantinformationanditscomputationalrequirements.Suchevaluationisbasedonexperimentsrunonaprototypalimplementationoftheproposedapproach.KeywordsTrafficAnalysis,NetworkMonitoring,DataMining1.IntroductionOneofthemostcriticalissuesinkeepinganetworkundercontr

4、oliscapturingandanalyzingitstraffic.Thecomplexityofthesetasksisincreasingasnetworksbecomefasterandfaster.MajorproblemsstemfromtheCPUpowerneededtoprocesscapturednetworktrafficandthestoragerequirementsofhistoricaldata.Often,trafficcapturingandanalysisgoesthro

5、ughthestepsdepictedinFigure1,allofwhicharecriticalwhenoperatingathighdatarates.Somelimitedprocessing(e.g.associatingeachpackettoitscorrespondingflow)iscarriedoutinreal-timeimmediatelyduringthecapturesession.Then,resultscanbestoredonadisktobefurtherelaborate

6、dwithoff-linetools,whichdonotsufferthelimitationsstemmingfromreal-timeprocessing.Ad-hocsolutionsbasedonadvancedhardware(e.g.thenetworkinterfacecardsprovidedbyEndace[16])andtheuseofSMPworkstationsorevenclusterscanmitigatetheproblemsrelatedtoon-linemonitoring

7、andanalysis(thefirststepsinFigure1).However,nostraightforwardsolutionexiststoreducethecriticalitiesofthesubsequentsteps.Forinstance,a10Gbpspipecarriesmorethan100TBytesinthecourseofaday,whichisatremendousamountofdatatobestoredforsubsequentprocessing.Thisresu

8、ltsintwoproblems:ontheonehand,theinfrastructureneededtostoresuchamountofdataissophisticatedandcostlyand,ontheotherhand,locatingrelevantinformationwithinthesaveddataiscomputationallyintenseandtimeconsum

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。