欢迎来到天天文库
浏览记录
ID:40351859
大小:419.13 KB
页数:5页
时间:2019-07-31
《Self Learning Network Traffic Classification 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、IEEESponsored2ndInternationalConferenceonInnovationsinInformationEmbeddedandCommunicationSystemsICIIECS’15SelfLearningNetworkTrafficClassificationVandanaM,SruthyManmadhan,Student,M.TechAssistantProfessorComputerScience&Engineering,ComputerScience&EngineeringNSSCollegeofEngineering,Palakk
2、adKeralaNSSCollegeofEngineering,Palakkad,vandana19191@gmail.comKeralasruthym.88@gmail.comAbstract-Networkmanagementispartoftrafficengineeringthenetworkmanagersmusthaveadetailedknowledgeaboutandsecurity.Thecurrentsolutions-DeepPacketInspectionapplicationsandprotocols.Theuserapplicationmay
3、allow(DPI)andstatisticalclassification,relyontheavailabilityofalargedelaysorjitter,buttheusersmightbeverysensitivetotrainingset.Incaseofthesethereisacumbersomeneedtolongwaittimes.Managingnetworktrafficrequiresaregularlyupdatethesignatures.Furthertheirvisibilityisjudiciousbalanceofallthes
4、epriorities.limitedtoclassestheclassifierhasbeentrainedfor.UnsupervisedalgorithmshavebeenenvisionedasaanClassificationoftraffichelpsidentifydifferentalternativetoautomaticallyidentifyclassesoftraffic.applicationsandprotocolsthatexistinanetwork.DifferentToaddresstheseissuesSelfLearningNet
5、workmethodssuchasmonitoring,discovery,control,andTrafficClassificationisproposed.Itusesunsupervisedoptimizationcanbeperformedontheidentifiedtrafficinalgorithmsalongwithanadaptiveseedingapproachtoordertoimprovethenetworkperformance.Typically,onceautomaticallyletsclassesoftraffictoemerge,m
6、akingthemthepacketsareclassified(identified)asbelongingtoaidentifiedandlabelled.Unliketraditionalclassifiers,thereisnoparticularapplicationorprotocol,theyaremarkedorflagged.needofa-prioriknowledgeofsignaturesnoratrainingsettoextractthesignatures.Instead,SelfLearningNetworkTrafficThesemar
7、kingsorflagshelptherouterdetermineappropriateClassificationautomaticallygroupsflowsintopure(orservicepoliciestobeappliedforthoseflows.homogeneous)clustersusingsimplestatisticalfeatures.ThisAllgenericclassificationtechniquesbasedonlabelassignment(whichisstillbasedonsomeman
此文档下载收益归作者所有