Learning_a_classification_model_for_segmentation

Learning_a_classification_model_for_segmentation

ID:39508346

大小:554.93 KB

页数:8页

时间:2019-07-04

Learning_a_classification_model_for_segmentation_第1页
Learning_a_classification_model_for_segmentation_第2页
Learning_a_classification_model_for_segmentation_第3页
Learning_a_classification_model_for_segmentation_第4页
Learning_a_classification_model_for_segmentation_第5页
资源描述:

《Learning_a_classification_model_for_segmentation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LearningaClassificationModelforSegmentationXiaofengRenandJitendraMalikComputerScienceDivisionUniversityofCaliforniaatBerkeley,Berkeley,CA94720fxren,malikg@cs.berkeley.eduAbstractWeproposeatwo-classclassificationmodelforgroup-ing.Humansegmentednaturalimage

2、sareusedaspositiveexamples.Negativeexamplesofgroupingareconstructed(a)(b)(c)byrandomlymatchinghumansegmentationsandimages.Inapreprocessingstageanimageisoversegmentedintosu-Figure1.Weformulatesegmentationasclassificationperpixels.Wedefineavarietyoffeatures

3、derivedfromthebetweengoodsegmentations(b)andbadsegmenta-classicalGestaltcues,includingcontour,texture,bright-tions(c).WeuseGestaltgroupingcuesasfeaturesnessandgoodcontinuation.Information-theoreticanaly-andtrainaclassifier.Humansegmentedimagesaresisisapp

4、liedtoevaluatethepowerofthesegroupingcues.usedasexamplesofgoodsegmentations.Badseg-Wetrainalinearclassifiertocombinethesefeatures.Tomentationsareconstructedbyrandomlymatchingademonstratethepoweroftheclassificationmodel,asimplehumansegmentationtoadifferent

5、image.algorithmisusedtorandomlysearchforgoodsegmenta-tions.Resultsareshownonawiderangeofimages.boundaries.Theprincipleofsimilarityistwofold:1.Introduction1.intra-regionsimilarity:theelementsinaregionaresimilar.Thisincludessimilarbrightness,similartex-Pe

6、rceptualgroupingcanbeformulatedasanopti-ture,andlowcontourenergyinsidetheregion;mizationprobleminanumberofdifferentframeworks,2.inter-region(dis)similarity:theelementsindifferentsuchasgraphpartitioning[22,16,8,5]orvariationalregionsaredissimilar.Thisint

7、urnincludesdissimilarapproaches[13].Theobjectivefunctionbeingoptimizedisbrightness,dissimilartexture,andhighcontourenergytypicallydrivenbythedesigner'sintuitionorcomputationalonregionboundaries.convenience.Thethemeofthispaperistoderivethe“right”optimiza

8、tioncriterion.ThisisdoneinalearningapproachTheseclassicalprinciplesofgroupinghaveinspiredmanyusingadatabaseofhumansegmentedimages.previousapproachestosegmentation.However,theGestaltWeformulatethecomputationalproblemofsegmenta-pri

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签