资源描述:
《cvpr18-Translating and Segmenting Multimodal Medical Volumes With Cycle- and Shape-Consistency Generative Adversarial Network》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、TranslatingandSegmentingMultimodalMedicalVolumeswithCycle-andShape-ConsistencyGenerativeAdversarialNetworkZizhaoZhang+∗,LinYang+,YefengZheng∗+UniversityofFlorida∗MedicalImagingTechnologies,SiemensHealthcareAbstractSynthesizedmedicalimageshaveseveralim
2、portantap-CTMRIplications,e.g.,asanintermediumincross-modalityimageregistrationandassupplementarytrainingsamplestoboostthegeneralizationcapabilityofaclassifier.Especially,syn-thesizedcomputedtomography(CT)datacanprovideX-rayattenuationmapforradiationth
3、erapyplanning.InMRICTthiswork,weproposeagenericcross-modalitysynthesisapproachwiththefollowingtargets:1)synthesizingreal-isticlooking3Dimagesusingunpairedtrainingdata,2)ensuringconsistentanatomicalstructures,whichcouldbechangedbygeometricdistortioninc
4、ross-modalitysynthesisFigure1:Ourmethodlearnstwoparallelsetsofgenera-and3)improvingvolumesegmentationbyusingsynthetictorsGA/BandsegmentorsSA/BfortwomodalitiesAanddataformodalitieswithlimitedtrainingsamples.WeshowBtotranslateandsegmentholistic3Dvolumes
5、.Herewethatthesegoalscanbeachievedwithanend-to-end3Dcon-illustrateusingCTandMRIcardiovascular3Dimages.volutionalneuralnetwork(CNN)composedofmutually-beneficialgeneratorsandsegmentorsforimagesynthesisandsegmentationtasks.Thegeneratorsaretrainedwithanpla
6、nning[4].adversarialloss,acycle-consistencyloss,andalsoashape-Machinelearning(ML)basedmethodshavebeenwidelyconsistencyloss,whichissupervisedbysegmentors,tore-usedformedicalimageanalysis[41,40],includingdetec-ducethegeometricdistortion.Fromthesegmentat
7、ionview,tion,segmentation,andtrackingofananatomicalstructure.thesegmentorsareboostedbysyntheticdatafromgener-Suchmethodsareoftengenericandcanbeextendedfromatorsinanonlinemanner.Generatorsandsegmentorsoneimagingmodalitytotheotherbyre-trainingonthetar-p
8、rompteachotheralternativelyinanend-to-endtraininggetimagingmodality.However,asufficientnumberofrep-fashion.Withextensiveexperimentsonadatasetincludingresentativetrainingimagesarerequiredtoachieveenoughatotalof4,496CTandmagneticresonanceimaging(