Spiking Neural Networks, the Next Generation of Machine Learning

Spiking Neural Networks, the Next Generation of Machine Learning

ID:39716231

大小:490.91 KB

页数:4页

时间:2019-07-09

Spiking Neural Networks, the Next Generation of Machine Learning_第1页
Spiking Neural Networks, the Next Generation of Machine Learning_第2页
Spiking Neural Networks, the Next Generation of Machine Learning_第3页
Spiking Neural Networks, the Next Generation of Machine Learning_第4页
资源描述:

《Spiking Neural Networks, the Next Generation of Machine Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ApplausefromLudovicBenistantand56othersDevinSoniFollowcryptomarkets,datascience—100.github.ioJan11·4minreadSpikingNeuralNetworks,theNextGenerationofMachineLearningEveryonewhohasbeenremotelytunedintorecentprogressinmachinelearninghasheardofthecurrent2ndgenerationartic

2、ialneuralnetworksusedformachinelearning.Thesearegenerallyfullyconnected,takeincontinuousvalues,andoutputcontinuousvalues.Althoughtheyhaveallowedustomakebreakthroughprogressinmanyelds,theyarebiologicallyinn-accurateanddonotactuallymimictheactualmechanismsofourbrain’sn

3、eurons.The3rdgenerationofneuralnetworks,spikingneuralnetworks,aimstobridgethegapbetweenneuroscienceandmachinelearning,usingbiologically-realisticmodelsofneuronstocarryoutcomputation.Aspikingneuralnetwork(SNN)isfundamentallydierentfromtheneuralnetworksthatthemachinele

4、arningcommunityknows.SNNsoperateusingspikes,whicharediscreteeventsthattakeplaceatpointsintime,ratherthancontinuousvalues.Theoccurrenceofaspikeisdeterminedbydierentialequationsthatrepresentvariousbiologicalprocesses,themostimportantofwhichisthemembranepotentialofthene

5、uron.Essentially,onceaneuronreachesacertainpotential,itspikes,andthepotentialofthatneuronisreset.ThemostcommonmodelforthisistheLeakyintegrate-and-re(LIF)model.Additionally,SNNsareoftensparselyconnectedandtakeadvantageofspecializednetworktopologies.Dierentialequation

6、formembranepotentialintheLIFmodelMembranepotentialbehaviorduringaspikeSpiketrainsforanetworkof3neuronsAfullspikingneuralnetworkAtrstglance,thismayseemlikeastepbackwards.Wehavemovedfromcontinuousoutputstobinary,andthesespiketrainsarenotveryinterpretable.However,spiket

7、rainsoerusenhancedabilitytoprocessspatio-temporaldata,orinotherwords,real-worldsensorydata.Thespatialaspectreferstothefactthatneuronsareonlyconnectedtoneuronslocaltothem,sotheseinherentlyprocesschunksoftheinputseparately(similartohowaCNNwouldusingalter).Thetemporala

8、spectreferstothefactthatspiketrainsoccurovertime,sowhatweloseinbinaryencoding,wegaininthetemporalinformationofthespikes.This

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。