资源描述:
《Spiking Neural Networks, the Next Generation of Machine Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ApplausefromLudovicBenistantand56othersDevinSoniFollowcryptomarkets,datascience—100.github.ioJan11·4minreadSpikingNeuralNetworks,theNextGenerationofMachineLearningEveryonewhohasbeenremotelytunedintorecentprogressinmachinelearninghasheardofthecurrent2ndgenerationarti c
2、ialneuralnetworksusedformachinelearning.Thesearegenerallyfullyconnected,takeincontinuousvalues,andoutputcontinuousvalues.Althoughtheyhaveallowedustomakebreakthroughprogressinmany elds,theyarebiologicallyinn-accurateanddonotactuallymimictheactualmechanismsofourbrain’sn
3、eurons.The3rdgenerationofneuralnetworks,spikingneuralnetworks,aimstobridgethegapbetweenneuroscienceandmachinelearning,usingbiologically-realisticmodelsofneuronstocarryoutcomputation.Aspikingneuralnetwork(SNN)isfundamentallydi erentfromtheneuralnetworksthatthemachinele
4、arningcommunityknows.SNNsoperateusingspikes,whicharediscreteeventsthattakeplaceatpointsintime,ratherthancontinuousvalues.Theoccurrenceofaspikeisdeterminedbydi erentialequationsthatrepresentvariousbiologicalprocesses,themostimportantofwhichisthemembranepotentialofthene
5、uron.Essentially,onceaneuronreachesacertainpotential,itspikes,andthepotentialofthatneuronisreset.ThemostcommonmodelforthisistheLeakyintegrate-and- re(LIF)model.Additionally,SNNsareoftensparselyconnectedandtakeadvantageofspecializednetworktopologies.Di erentialequation
6、formembranepotentialintheLIFmodelMembranepotentialbehaviorduringaspikeSpiketrainsforanetworkof3neuronsAfullspikingneuralnetworkAt rstglance,thismayseemlikeastepbackwards.Wehavemovedfromcontinuousoutputstobinary,andthesespiketrainsarenotveryinterpretable.However,spiket
7、rainso erusenhancedabilitytoprocessspatio-temporaldata,orinotherwords,real-worldsensorydata.Thespatialaspectreferstothefactthatneuronsareonlyconnectedtoneuronslocaltothem,sotheseinherentlyprocesschunksoftheinputseparately(similartohowaCNNwouldusinga lter).Thetemporala
8、spectreferstothefactthatspiketrainsoccurovertime,sowhatweloseinbinaryencoding,wegaininthetemporalinformationofthespikes.This