资源描述:
《《向量的内积》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§5.1预备知识:向量的内积一、向量内积的定义及性质在解析几何中有两向量的数量积的概念,即设x,y为两向量,则它们的数量积为:x·y=
2、x
3、
4、y
5、cos.设向量x,y的坐标表示式为x=(x1,x2,x3),y=(y1,y2,y3),则x·y=x1y1+x2y2+x3y3.由此引出了向量的长度(即模)和两向量夹角的概念:定义1:设有n维向量[x,y]=x1y1+x2y2+···+xnyn,称[x,y]为向量x与y的内积.说明1.n(n4)维向量的内积是3维向量数量积的推广,但是没有3维向量直观的几何意义.说明2.内积是向量的
6、一种运算,如果都是列向量,内积可用矩阵记号表示为:[x,y]=xTy.我们把两向量的数量积的概念向n维向量推广:记内积的运算性质设x,y,z为n维向量,为实数,则(1)[x,y]=[y,x];(2)[x,y]=[x,y];(3)[x+y,z]=[x,z]+[y,z];(4)[x,x]0,当且仅当x=0时有[x,x]=0.二、向量的长度及性质称
7、
8、x
9、
10、为n维向量x的长度(或范数).定义:令向量的长度具有下述性质:(1)非负性:
11、
12、x
13、
14、0,当且仅当x=0时有
15、
16、x
17、
18、=0;(2)齐次性:
19、
20、x
21、
22、=
23、
24、
25、
26、x
27、
28、
29、;(3)三角不等式:
30、
31、x+y
32、
33、
34、
35、x
36、
37、+
38、
39、y
40、
41、.单位向量及n维向量间的夹角(1)当
42、
43、x
44、
45、=1时,称x为单位向量.(2)当
46、
47、x
48、
49、0,
50、
51、y
52、
53、0时,称为n维向量x与y的夹角,规定0.例1:求向量=(1,2,2,3)与=(3,1,5,1)的夹角解:[x,y]=13+21+25+31=18,所以故,向量x与y的夹角为:三、正交向量组的概念及求法1.正交的概念2.正交向量组的概念若一非零向量组中的向量两两正交,则称该向量组为正交向量组.当[x,y]=0时,称向量x与y正交.由定义知,若x=0
54、,则x与任何向量都正交.3.正交向量组的性质定理1:若向量组1,2,···,r是n维正交向量组,则1,2,···,r线性无关.证明:设有数1,2,···,r,使得:11+22+···+rr=0由于1,2,···,r是两两正交的非零向量组,当ij时,[i,j]=iTj=0,当i=j时,[i,i]=iTi0,则有用iT(i=1,2,···,r)左乘上式得,1iT1+2iT2+···+riTr=iT0=0,iiTi=0.即从而得,1=2=···=
55、r=0,所以1,2,···,r线性无关.4.向量空间的正交基定义:若正交向量组1,2,···,r是向量空间V的一组基,则称1,2,···,r是向量空间V的一组正交基.例2:已知三维向量空间中两个向量正交.试求3使1,2,3构成三维空间的一组正交基.1=(1,1,1)T,2=(1,–2,1)T即解之得解:设3=(x1,x2,x3)T0,且分别与1,2正交.则有[1,3]=[2,3]=0,x1=–x3,x2=0.若令x3=1,则有构成三维空间的一组正交基.则5.规范正交基例如定义:设
56、n维向量组e1,e2,···,er是向量空间VRn的一组正交基,且都是单位向量,则称e1,e2,···,er是向量空间V的一组规范正交基.由于所以,e1,e2,e3,e4为R4的一组规范正交基.同理可知也为R4的一组规范正交基(即单位坐标向量组).设e1,e2,···,er是向量空间V的一组规范正交基,则V中的任一向量a可由e1,e2,···,er线性表示,设表示式为:a=1e1+2e2+···+rer,用eiT左乘上式,有eiTa=ieiTei=i,即i=eiTa=[a,ei],这就是向量在规范正交基中的坐标(
57、即线性表示系数)的计算公式.利用该公式可方便地计算向量在规范正交基中的坐标,因此我们常取向量空间的规范正交基.6.求规范正交基的方法已知1,2,···,r是向量空间V的一组基,求V的一组规范正交基,就是要找一组两两正交的单位向量e1,e2,···,er,使e1,e2,···,er与1,2,···,r等价,这样一个问题称为把基1,2,···,r规范正交化.(1)正交化设a1,a2,···,ar是向量空间V的一组基.··················取b1=a1,则b1,b2,···,br两两正交,且b1,b2
58、,···,br与a1,a2,···,ar等价.(2)单位化,取则e1,e2,···,en是向量空间V的一组规范正交基.上述由线性无关向量组a1,a2,···,ar构造出正交向量组b1,b2,···,br的过程称为施密特(Schimidt)正交化过程.例3:用施密特正交化方法,