人教版八年级下册函数教学设计

人教版八年级下册函数教学设计

ID:39389266

大小:93.00 KB

页数:4页

时间:2019-07-02

人教版八年级下册函数教学设计_第1页
人教版八年级下册函数教学设计_第2页
人教版八年级下册函数教学设计_第3页
人教版八年级下册函数教学设计_第4页
资源描述:

《人教版八年级下册函数教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《函数》教学设计王芳教学目标:理解变量与函数的概念以及相互之间的关系,了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.教学重点:变量与常量,函数的概念、表示方法,解析式中自变量的范围教学难点:函数的概念及解析式中自变量的范围教学过程:一、创设情境在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题1如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?

2、什么时段的气温在逐渐降低?解:(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳问题2(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影售出票x张,票房收入为y元,怎样用含x的式子表示y?(2)在一

3、根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度L(单位:cm)?(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中,我们称数值发生

4、变化的量为变量.数值始终不变的量为常量。指出上述问题中的变量和常量。问题3银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.解:随着存期x的增长,相应的年利率y也随着增长.问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就

5、_________.解:S=πr2.圆的半径越大,它的面积就越大.上面各个问题中,都出现了两个变量,一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数.表示函数关系的方法通常有三种:解析法、列表法、图象法问题5试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解y与x的函数关系式:y=180-2x.问题6如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点

6、重合.试写出重叠部分面积ycm2与MA长度xcm之间的函数关系式.解:y与x的函数关系式:.思考(1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.问题5,因三角形内角和是180°,所以等腰三角形的底角的度数x不可能大于或等于90°.问题6,开始时A点与M点重合,MA长度为0cm,随着△ABC不断向右运动过程中,MA长度逐渐增长,最后A点与N点重合时,MA长度达到10cm.问题5,自变量x的取值范围是:0<x<90;问题6,自变量x的取值范围是:0≤x≤10.归纳;1.上面例子中的函数,都是利用解析法表示的,又例如:s=60

7、t,S=πR2.2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S=πR2中自变量R的取值范围是全体实数,如果式子表示圆面积S与圆半径R的关系,那么自变量R的取值范围就应该是R>0.3.对于函数y=x(30-x),当自变量x=5时,对应的函数y的值是y=5×(30-5)=5×25=125.125叫做这个函数当x=5时的函数值.三、典例学习例1下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?

8、(2)该市男学生的平均身高从哪一岁开始迅速增加?(3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。