欢迎来到天天文库
浏览记录
ID:38946615
大小:676.00 KB
页数:19页
时间:2019-06-21
《北师大版七下数学几何部分期末练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北师大版七年级下册数学几何及概率部分练习题精选1.已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系,并说明理由.2.如图所示的四幅图形,都满足AB∥CD,请在每幅图形中写出∠A、∠C,与∠AEC的数量关系(都指图中小于180°的角),并任选一个完成它的证明过程.3.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)
2、如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.4.如图,AC∥BD,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O,试说明:AE⊥CF5.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由6.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P
3、在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.7.如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请你判断他的发现是否正确,并说明理由
4、8.情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.9.如图,已知∠1+∠2=180°,
5、∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.10.如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论11.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E,若∠AFD=158°,求∠EDF的度数12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C(2)应用:如图2,∠ABC=10
6、0°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数13.已知:如图,在△ABC中,∠ABC=∠ACB,AD⊥BD,AE⊥CE,且AD=AE.求证:△AEC≌△ADB14.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由15.如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于F,连接CF,若AF=CF,猜想线段BF、AF的数量关系,并证明你的猜想16.如图,AD是△ABC
7、的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:BE=CF17.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论18.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.如图,
8、点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.21.已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数22.已知:∠ACB=90°,AC=BC,AD⊥CM,
此文档下载收益归作者所有