欢迎来到天天文库
浏览记录
ID:38289892
大小:46.50 KB
页数:3页
时间:2019-06-07
《等腰梯形的性质和判定》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、苏科九上教案1.4等腰梯形的性质和判定泰州市大方初级中学夏晓军教学目标1、掌握梯形、等腰梯形、直角梯形的有关概念2、能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力3、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想教学重、难点重点:等腰梯形的性质与判定定理的证明难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线)教学过程一、复习提问1、什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?2、等腰梯形有哪些性质?它的性质定理是怎样证明的?3、在研究解决梯形问题时的基本思
2、想和方法是什么?常用的辅助线有哪几种?我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题。二、引入新课等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形。例1已知:如图,在梯形ABCD中,AD∥BC,∠B=∠C求证:梯形ABCD是等腰梯形分析:要证等腰梯形,只需证DE=DC。(方法一)如图一,过点D作DE∥AB,并交BC于E,得∠DEC=∠B=∠C,所以得DE=DC;(方法二)如图二,作高AE、DF,通过证Rt△ABE≌Rt△DCF,得出AB=DC;3苏科九上教案(方法三)如图三,分别延长BA、CD交于点E,则△EAD与△EBC
3、都是等腰三角形,所以可得结论。由此我们想到梯形的性质定理:等腰梯形同底上的两底角相等。例2求证:等腰梯形的两条对角线相等已知:在梯形ABCD中,AD∥BC,AB=DC。求证:AC=BD。分析:要证AC=BD,只要用等腰梯形的性质得出∠ABC=∠DCB,然后再利用△ABC≌△DCB,即可得出AC=BD。解决梯形问题常用的方法(1)“作高”:使两腰在两个直角三角形中;(2)“移对角线”:使两条对角线在同一个三角形中;(3)“延腰”:构造具有公共角的两个等腰三角形;(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。三、练习课本练习1、2四、小结研究
4、四边形问题,常常把它转化成研究三角形的问题,这就把一个有待解决的新问题转化为我们会解的问题。五、作业3苏科九上教案作业纸3
此文档下载收益归作者所有