教学设计勾股

教学设计勾股

ID:37788200

大小:83.49 KB

页数:6页

时间:2019-05-31

教学设计勾股_第1页
教学设计勾股_第2页
教学设计勾股_第3页
教学设计勾股_第4页
教学设计勾股_第5页
资源描述:

《教学设计勾股》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【教学设计】探索勾股定理(一)1. 探索勾股定理(第1课时)教学目标:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.教学过程设计本节课设计了五个教

2、学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)紧扣课题,自然引入,同时渗透爱国主义教育.第二环节:探索发现勾股定理1.探究活动一投影显示如下地板砖示意图,引导学生从面积角度观察图形:    问:你能发现各图中三个正方形的面积之间

3、有何关系吗?学生通过观察,归纳发现:结论1  以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:      (2)填表: A的面积B的面积C的面积(单位面积)(单位面积)(单位面积)左图   右图   (3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)      图1

4、   图2 图3学生的方法可能有:方法一:如图1,将正方形C分割为四个全等的直角三角形和一个小正方形, .方法二:如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.(4)分析填表的数据,你发现了什么?学生通过分析数据,归纳出:结论2  以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.探究活动二意在让学生通过观察、计算、探讨、归纳进一步

5、发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.3.议一议内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称

6、为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?(教师板演解题过程)练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):    2.生活中的应用:  小明妈妈买了一部29 in(74 cm)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽,他

7、觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?第四环节:课堂小结内容:教师提问:1.这一节课我们一起学习了哪些知识和思想方法?2.对这些内容你有什么体会?与同伴进行交流.在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.2.方法:(1) 观察—探索—猜想—验证—归纳—应用;         (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊;          (2) 数形结合思想.鼓励学生积极大胆发言,可增进师生、生生之间的交流、

8、互动.第五环节:布置作业

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。