欢迎来到天天文库
浏览记录
ID:36623967
大小:330.00 KB
页数:6页
时间:2019-05-13
《2014巫溪中学高二数学下期末复习题及答案(文)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、参考公式:,巫溪中学高二下期末复习题(文)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合A=,B=,则AB等于()ABC{x
2、x>-3}D{x
3、x<1}2、不等式的解集是())3、若函数,则f(f(10))=( )A.lg101B.2C.1D.04、设,函数在区间上的最大值与最小值之差为,则()A.B.4C.D.25、设,则使函数的定义域为R且为奇函数的所有的值为()A.-1,3B.-1,1C.1,3D.-1,1,3X
4、k
5、B
6、1.c
7、O
8、m6、已知是上的减函数,那么的取值范围是()A.B.C.D.7、已
9、知命题“”是真命题,则实数a的取值范围是()A.B.C.D.(—1,1)8、设函数是定义在上的奇函数,且对任意都有,当时,,则的值为()A.B.C.2D.9、已知函数,若互不相等,且,则的取值范围是()A.B. C. D.10、给出定义:若m-10、数y=f(x)在[-,]上是增函数.新-课-标-第-一-网其中正确的命题的序号是()A.①B.②③C.①②③D.①④二、填空题:11、已知全集U,A,B,那么12、已知x与y之间的一组数据:x0246y1357则y与x的线性回归方程为y=bx+a必过点.13、关于的方程的实数解为______________.14、.函数是R上的偶函数,且在上是增函数,若,则实数的取值范围是______.15、已知x[0,1],则函数y=的值域是.三、解答题:解答应写出文字说明、证明过程或演算步骤(16.(本11、小题满分13分)化简求值:(1)(2)0.064-(-)0+16+0.25;17.(本小题满分13分)且复数(为虚数单位)在复平面内表示的点为则:(1)当实数取什么值时,复数是纯虚数;(2)当点位于第三象限时,求实数的取值范围.18.(本小题满分13分)尘肺病是一种严重的职业病,新密市职工张海超“开胸验肺”的举动引起了社会的极大关注.据悉尘肺病的产生,与工人长期生活在粉尘环境有直接的关系.下面是一项调查数据: 有过粉尘环境工作经历无粉尘环境工作经历合计有尘肺病11256168无尘肺病5656112合计168112280请由此分析我们12、有多大的把握认为是否患有尘肺病与是否有过粉尘环境工作经历有关系.P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.845.0246.6357.87910.8319.((本小题满分12分)已知定义域为R的函数是奇函数.(1)求的值;(2)证明在上为减函数.wWw.xKb1.coM(3)若对于任意,不等式恒成立,求的范围.20.本题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记13、录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x(℃)101113128发芽y(颗)2325302616该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.(1)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(2)请预测温差为14℃的发芽数。xKb1.Com(3)若由线性回归方程得到的估计数据与所选出的检验数据(即:1214、月1日与12月5日的两组实际数据)之间的误差均不超过2颗则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?21.(本小题满分12分)设二次函数满足下列条件:①当∈R时,的最小值为0,且f(-1)=f(--1)成立;②当∈(0,5)时,≤≤2+1恒成立。(1)求的值;(2)求的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。巫溪中学高二下期中测试题(文)参考答案选择题:ADBBCDCACCX15、k16、B17、1.c18、O19、m、12、13、-114、或15、[]16、解:(Ⅰ)原式====(Ⅱ20、)原式=217、解:(Ⅰ)(2)18.解假设“是否患有尘肺病与是否有过粉尘环境工作经历无关”,则:由此分析我们有的把握认为是否患有尘肺病与是否有过粉尘环境工作经历有关系19、解:(1)经检验符合题意.(2)任取xKb1.Com则=(3
10、数y=f(x)在[-,]上是增函数.新-课-标-第-一-网其中正确的命题的序号是()A.①B.②③C.①②③D.①④二、填空题:11、已知全集U,A,B,那么12、已知x与y之间的一组数据:x0246y1357则y与x的线性回归方程为y=bx+a必过点.13、关于的方程的实数解为______________.14、.函数是R上的偶函数,且在上是增函数,若,则实数的取值范围是______.15、已知x[0,1],则函数y=的值域是.三、解答题:解答应写出文字说明、证明过程或演算步骤(16.(本
11、小题满分13分)化简求值:(1)(2)0.064-(-)0+16+0.25;17.(本小题满分13分)且复数(为虚数单位)在复平面内表示的点为则:(1)当实数取什么值时,复数是纯虚数;(2)当点位于第三象限时,求实数的取值范围.18.(本小题满分13分)尘肺病是一种严重的职业病,新密市职工张海超“开胸验肺”的举动引起了社会的极大关注.据悉尘肺病的产生,与工人长期生活在粉尘环境有直接的关系.下面是一项调查数据: 有过粉尘环境工作经历无粉尘环境工作经历合计有尘肺病11256168无尘肺病5656112合计168112280请由此分析我们
12、有多大的把握认为是否患有尘肺病与是否有过粉尘环境工作经历有关系.P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.845.0246.6357.87910.8319.((本小题满分12分)已知定义域为R的函数是奇函数.(1)求的值;(2)证明在上为减函数.wWw.xKb1.coM(3)若对于任意,不等式恒成立,求的范围.20.本题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记
13、录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x(℃)101113128发芽y(颗)2325302616该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.(1)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(2)请预测温差为14℃的发芽数。xKb1.Com(3)若由线性回归方程得到的估计数据与所选出的检验数据(即:12
14、月1日与12月5日的两组实际数据)之间的误差均不超过2颗则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?21.(本小题满分12分)设二次函数满足下列条件:①当∈R时,的最小值为0,且f(-1)=f(--1)成立;②当∈(0,5)时,≤≤2+1恒成立。(1)求的值;(2)求的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。巫溪中学高二下期中测试题(文)参考答案选择题:ADBBCDCACCX
15、k
16、B
17、1.c
18、O
19、m、12、13、-114、或15、[]16、解:(Ⅰ)原式====(Ⅱ
20、)原式=217、解:(Ⅰ)(2)18.解假设“是否患有尘肺病与是否有过粉尘环境工作经历无关”,则:由此分析我们有的把握认为是否患有尘肺病与是否有过粉尘环境工作经历有关系19、解:(1)经检验符合题意.(2)任取xKb1.Com则=(3
此文档下载收益归作者所有