欢迎来到天天文库
浏览记录
ID:35817750
大小:254.93 KB
页数:14页
时间:2019-04-20
《高考数学复习推理与证明、算法、复数专题探究课六学案文新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题探究课六高考导航 1.概率与统计是高考中相对独立的一块内容,处理问题的方式、方法体现了较高的思维含量.该类问题以应用题为载体,注重考查学生的应用意识及阅读理解能力、分类讨论与化归转化能力;2.概率问题的核心是概率计算,其中事件的互斥、对立是概率计算的核心.统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征.统计与概率内容相互渗透,背景新颖.热点一 统计与统计案例(教材VS高考)以统计图表或文字叙述的实际问题为载体,通过对相关数据的统计分析、抽象概括,作出估计、判断.常与
2、抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生的数据处理能力与运算能力及应用意识.【例1】(2016·全国Ⅲ卷)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.646.参考公式:相
3、关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=-.解 (1)由折线图中数据和附注中参考数据得=4,(ti-)2=28,=0.55.(ti-)(yi-)=tiyi-yi=40.17-4×9.32=2.89,r≈≈0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.(2)由=≈1.331及(1)得==≈0.103,=-≈1.331-0.103×4≈0.92.所以y关于t的回归方程为=0.92+0.10t.将2016年对应的t
4、=9代入回归方程得=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.教材探源 1.本题源于教材(必修3P90例)有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:摄氏温度/℃-504712151923273136热饮杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2℃,预测
5、这天卖出的热饮杯数.2.(1)考题以形求数,教材是由数到形再到数;(2)考题与教材都是“看图说话,回归分析预测”,但考题中以具体数字(相关系数)说明拟合效果,突显数学直观性与推理论证的巧妙融合,进一步考查考生的数据处理能力与运算能力及应用意识,源于教材,高于教材.【训练1】(2017·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129
6、.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得=xi=9.97,s==≈0.212,≈18.439,(xi-)(i-8.5)=-2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若
7、r
8、<0.25,则可以认为零件的尺寸不随生产过程的
9、进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(-3s,+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①从这一天抽检的结果看,是否需对当天的生产过程进行检查?②在(-3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差(精确到0.01).附:样本(xi,yi)(i=1,2,…,n)的相关系数r=,≈0.09.解 (1)由样本数据得(xi,i)(i=1,2,…,16)的相关系数r=≈≈-0.1
10、8.由于
11、r
12、<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)①由于=9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(-3s,+3s)以外.因此需对当天的生产过程进行检查.②剔除离群值,即第13个数据,剩下数据的平均数为(16×9.97-9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.x≈16×0.212
此文档下载收益归作者所有