利用三角恒等变换提升学生的运算能力

利用三角恒等变换提升学生的运算能力

ID:33171642

大小:223.50 KB

页数:8页

时间:2019-02-21

利用三角恒等变换提升学生的运算能力_第1页
利用三角恒等变换提升学生的运算能力_第2页
利用三角恒等变换提升学生的运算能力_第3页
利用三角恒等变换提升学生的运算能力_第4页
利用三角恒等变换提升学生的运算能力_第5页
资源描述:

《利用三角恒等变换提升学生的运算能力》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、利用三角恒等变换提升学生的运算能力1.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;(2)善于拆角、拼角如,等;(3)注意倍角的相对性(4)要时时注意角的范围(5)化简要求熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等。2.解答三角高考题的策略。(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。(2)寻找联系:运用相关公式,找出差异之间的内在联系。(3)合理转化:选择恰当的公式,促使差

2、异的转化3.加强三角函数应用意识的训练考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法。4.变为主线、抓好训练变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,

3、三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律。【典例解析】题型1:两角和与差的三角函数例1.已知,求cos。分析:因为既可看成是看作是的倍角,因而可得到下面的两种解法。解法一:由已知sin+sin=1…………①,cos+cos=0…………②,①2+②2得2+2cos;∴cos。①2-②2得cos2+cos2+2cos()=-1,即2cos()〔〕=-1。∴。

4、解法二:由①得…………③由②得…………④④÷③得点评:此题是给出单角的三角函数方程,求复角的余弦值,易犯错误是利用方程组解sin、cos、sin、cos,但未知数有四个,显然前景并不乐观,其错误的原因在于没有注意到所求式与已知式的关系本题关键在于化和为积促转化,“整体对应”巧应用。例2.已知求[来源:学科网ZXXK]分析:由韦达定理可得到进而可以求出的值,再将所求值的三角函数式用tan表示便可知其值解法一:由韦达定理得tan,所以tan解法二:由韦达定理得tan,所以tan[来源:学科网],。点评:(1)本例解法二比解

5、法一要简捷,好的解法来源于熟练地掌握知识的系统结构,从而寻找解答本题的知识“最近发展区”。(2)运用两角和与差角三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点。(3)对公式的逆用公式,变形式也要熟悉,如题型2:二倍角公式例3.化简下列各式:(1),(2)。分析:(1

6、)若注意到化简式是开平方根和2以及其范围不难找到解题的突破口;(2)由于分子是一个平方差,分母中的角,若注意到这两大特征,不难得到解题的切入点解析:(1)因为,又因,所以,原式=。(2)原式==。点评:(1)在二倍角公式中,两个角的倍数关系,不仅限于2是的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意三个角的内在联系的作用,是常用的三角变换。(2)化简题一定要找准解题的突破口或切入点,其中的降次,消元,切割化弦,异名化同名,异角化同角是常用的化简技巧。(3)公式变形,。例4.若。分析:注意的两变换,就有以下的两种

7、解法。解法一:由,[来源:Zxxk.Com]解法二:,[来源:学+科+网]点评:此题若将的左边展开成再求cosx,sinx的值,就很繁琐,把,并注意角的变换2·运用二倍角公式,问题就公难为易,化繁为简所以在解答有条件限制的求值问题时,要善于发现所求的三角函数的角与已知条件的角的联系,一般方法是拼角与拆角,如,,等。题型3:(2009北京文)(本小题共12分)已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.解析本题主要考查特殊角三角函数值、诱导公式、二倍角的正弦、三角函数在闭区间上的最值等基础知识,主要

8、考查基本运算能力.解(Ⅰ)∵,∴函数的最小正周期为.(Ⅱ)由,∴,∴在区间上的最大值为1,最小值为.点评:本题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能及运算能力。题型4:三角函数求值例5.设函数f(x)=cos2cos+sinrcosx+a(其中>0,aR),且f(x)的图象在y轴右侧的第一个高点的横坐标为。(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。