双曲线(讲)-2019年高考数学(理)---精校解析 Word版

双曲线(讲)-2019年高考数学(理)---精校解析 Word版

ID:31588523

大小:663.46 KB

页数:9页

时间:2019-01-14

双曲线(讲)-2019年高考数学(理)---精校解析 Word版_第1页
双曲线(讲)-2019年高考数学(理)---精校解析 Word版_第2页
双曲线(讲)-2019年高考数学(理)---精校解析 Word版_第3页
双曲线(讲)-2019年高考数学(理)---精校解析 Word版_第4页
双曲线(讲)-2019年高考数学(理)---精校解析 Word版_第5页
资源描述:

《双曲线(讲)-2019年高考数学(理)---精校解析 Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高考数学讲练测【新课标版】【讲】第九章解析几何第06节双曲线【考纲解读】考点考纲内容5年统计分析预测双曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(3)了解圆锥曲线的简单应用.(4)理解数形结合的思想2015•新课标I.5;II.11;2016•新课标I.5;II.11.2017•新课标II.9.2018•新课标I.11;II.5;III.11.1.高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程,结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;

2、二是考查双曲线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物线相结合的问题,综合性较强.不在独立考查双曲线大题.2.备考重点:(1)掌握双曲线的定义、标准方程、几何性质,关注双曲线的“特征三角形”;(2)熟练运用方程思想及待定系数法;(3)利用数形结合思想,灵活处理综合问题.【知识清单】1.双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程-=1(a>0,b>0)-=1(a>0,b>0)图形2.双曲线的几何性质双曲线的

3、几何性质标准方程-=1(a>0,b>0)-=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a对称性对称轴:坐标轴 对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±xy=±x离心率e=,e∈(1,+∞),其中c=实虚轴线段A1A2叫作双曲线的实轴,它的长

4、A1A2

5、=2a;线段B1B2叫作双曲线的虚轴,它的长

6、B1B2

7、=2b;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长.a、b、c的关系c2=a2+b2(c>a>0,c>b>0)【重点难点突破】考点1双曲线的定义及标准方程【1-1】【2017课标3,理5】已知双曲

8、线C:(a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为()A.B.C.D.【答案】B【1-2】【2018年理数天津卷】已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A.B.C.D.【答案】C【解析】设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择C选项.【综合点评】1.双曲线的轨迹类型是;2.双曲线标准方程的求解方法是”待定系数法”,“先定型,后计算”.【领悟技法】

9、1.待定系数法求双曲线方程的常用方法(1)与双曲线-=1共渐近线的可设为-=λ(λ≠0);(2)若渐近线方程为y=±x,则可设为-=λ(λ≠0);(3)若过两个已知点则设为+=1(mn<0).2.应用双曲线的定义需注意的问题:在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时注意定义的转化应用.3.求双曲线方程时一是标准形式判断;二是注意a、b、c的关系易错易混.【触类旁通】【变式一】【2017天津,理5】已知双曲线的左焦点为,离心率为.若经过和两点的

10、直线平行于双曲线的一条渐近线,则双曲线的方程为(A)(B)(C)(D)【答案】【变式二】【2018届重庆市巴蜀中学高三9月月考】已知双曲线的左、右焦点分别为,点为异于的两点,且的中点在双曲线的左支上,点关于和的对称点分别为,则的值为()A.26B.C.52D.【答案】D【解析】设MN与双曲线的交点为点P,由几何关系结合三角形中位线可得:,则:,点P位于双曲线的左支,则:.本题选择D选项.【综合点评】1、在焦点三角形中,注意双曲线的定义和正弦定理、余弦定理交汇解题;2、求双曲线方程需要两个独立条件.考点2双曲线的简单几何性质【2-1】【2018年理新课标I卷】已知双曲线C:,O为坐标原点,F为

11、C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则

12、MN

13、=A.B.3C.D.4【答案】B【2-2】【2017课标1,理】已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【答案】【解析】试题分析:【2-3】【2017江苏,8】在平面直角坐标系中,双曲线的右准线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。