资源描述:
《高考数学二轮专题复习与策略 第1部分 专题6 算法复数推理与证明概率与统计 第22讲 排列组合与二项式定理教师用书 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。第22讲 排列、组合与二项式定理题型一
2、两个计数原理 设a,b为实数,我们称(a,b)为有序实数对.类似地,设A,B,C为集合,我们称(A,B,C)为有序三元组.如果集合A,B,C满足
3、A∩B
4、=
5、B∩C
6、=
7、C∩A
8、=1,且A∩B∩C=∅,则我们称有序三元组(A,B,C)为最小相交(
9、S
10、表示集合S中的元素的个数).(1)请写出一个最小相交的有序三元组,并说明理由;(2)由集合{1,2,3,4,5,6}的子
11、集构成的所有有序三元组中,令N为最小相交的有序三元组的个数,求N的值.[解] (1)设A={1,2},B={2,3},C={1,3},则A∩B={2},B∩C={3},C∩A={1},A∩B∩C=∅,且
12、A∩B
13、=
14、B∩C
15、=
16、C∩A
17、=1.∴(A,B,C)是一个最小相交的有序三元组.6分(2)令S={1,2,3,4,5,6},如果(A,B,C)是由S的子集构成的最小相交的有序三元组,则存在两两不同的x,y,z∈S,使得A∩B={x},B∩C={y},C∩A={z}(如图),要确定x,y,z共有6×5×4种方法;对S中剩下的3个元素,每个元素有4种分配方式,即它属于集合A,B,C中的某一个
18、或不属于任何一个,则有43种确定方法.∴最小相交的有序三元组(A,B,C)的个数N=6×5×4×43=7680.10分【名师点评】 应用两个计数原理解题的方法1.在应用分类计数原理和分步计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.2.对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习
19、近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。如图22-1,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数有多少种.图22-1【导学号:19592063】[解] 可依次种A,B,C,D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;4分当C与A所种花不同时,有4×3×2×2=48(种)种法.8分由分类加法计数原理,不同的种法种数为36+48=84种.10分题型二
20、排列与组合 (1)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目
21、的演出顺序,求同类节目不相邻的排法种数.(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况共有多少种.[解] (1)先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1□小品2□相声□”,有ACA=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有AA=48(种)安排方法,故共有36+36+48=120(种)安排方法
22、.5分(2)把8张奖券分4组有两种方法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖、无奖)四组,分给4人有A种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C种分法,再分给4人有CA种分法,所以不同获奖情况种数为A+CA=24+36=60.10分【名师点评】 1.解决排列、组合问题应遵循的原则先特殊后一般,先选后排,先分类后分步.通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法
23、,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。2.解排列、组合综合应用题的解题流程1.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科