欢迎来到天天文库
浏览记录
ID:30155879
大小:168.04 KB
页数:6页
时间:2018-12-27
《平面向量应用举例(4)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2.5平面向量应用举例[教学目标]一、知识与能力:1.运用向量方法解决某些简单的平面几何问题.2.运用向量方法解决某些简单的物理问题.二、过程与方法:经历用向量方法解决某些简单的平面几何问题和物理问题的过程;体会向量是一种处理几何问题和物理问题的工具;发展运算能力和解决实际问题的能力.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题;树立学科之间相互联系、相互促进的辩证唯物主义观点.[教学重点]运用向量方法解决某些简单的平面几何问题和物理问题.[教学难点]运用向量方法解决某些简单的平面几何问题和物理问题.[教学时数]
2、2课时.[教学要求]教师应该引导学生运用向量解决一些物理和几何问题,例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题.[教学过程]第一课时一、复习回顾1.向量的概念;2.向量的表示方法:几何表示、字母表示;3.零向量、单位向量、平行向量的概念;4.在不改变长度和方向的前提下,向量可以在空间自由移动;5.相等向量:长度(模)相等且方向相同的向量;6.共线向量:方向相同或相反的向量,也叫平行向量.7.要熟练地掌握向量加法的平行四边形法则和三角形法则,并能做出已知两个向量的和向量;8.要理解向量加法的交换律和结
3、合律,能说出这两个向量运算律的几何意义;9.理解向量减法的意义;能作出两个向量的差向量.10.理解实数与向量的积的意义,能说出实数与一个向量的积这与个向量的模及方向间的关系;11.能说出实数与向量的积的三条运算律,并会运用它们进行计算;12.能表述一个向量与非零向量共线的充要条件;13.会表示与非零向量共线的向量,会判断两个向量共线.二、讲授新课由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图像的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来.因此可用向量方法解决平面几何中的一些问题.例1证明:对角线互相平分的
4、四边形是平行四边形.例3用向量方法证明:三角形三条高线交于一点.练习1:用向量方法证明:对角线相等的平行四边形是矩形.练习2:用向量方法证明:对角线互相垂直的平行四边形是菱形.三、归纳小结与作业向量是沟通数与形的十分有效的工具,利用向量处理平面几何问题,最重要的是要先在平面图形中寻找向量的“影子”,然后合理引入向量,并通过向量的运算,达到快捷解题的效果.布置作业习题2.5A组1、2,B组3第二课时一、引入新课物理学家很早就在自己的研究中使用向量概念,并早已发现这些量之间可以进行某种运算。数学家在物理学家使用向量的基础上,对向量又进行了深入的研究,使向量成为
5、研究数学和其他科学的有力工具.本节将举例说明向量在解决物理问题中的应用.二、例题讲解练习1:.练习2:练习3:三、归纳小结与布置作业向量具有强烈的物理学实际背景,物理学中有两种基本量,标量和矢量,矢量遍布在物理学的很多分支,它包括力、位移、速度、加速度、动量等,虽然物理学中的矢量与数学中的向量并不完全相同,但并不影响向量在物理学中的作用,许多物理学问题可以通过向量的方法加以解决.布置作业:习题2.5A组3、4B组1、2
此文档下载收益归作者所有