(春)九年级数学下册 28.2.1 解直角三角形教案 (新版)新人教版

(春)九年级数学下册 28.2.1 解直角三角形教案 (新版)新人教版

ID:29660012

大小:200.00 KB

页数:3页

时间:2018-12-21

(春)九年级数学下册 28.2.1 解直角三角形教案 (新版)新人教版_第1页
(春)九年级数学下册 28.2.1 解直角三角形教案 (新版)新人教版_第2页
(春)九年级数学下册 28.2.1 解直角三角形教案 (新版)新人教版_第3页
资源描述:

《(春)九年级数学下册 28.2.1 解直角三角形教案 (新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、28.2.1解直角三角形1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B,塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数.在上述的Rt△ABC中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】利用解直角三角形求边或角已知在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a,b,c,按下列条件解直角三角形.(1)

2、若a=36,∠B=30°,求∠A的度数和边b、c的长;(2)若a=6,b=6,求∠A、∠B的度数和边c的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt△ABC中,∵∠B=30°,a=36,∴∠A=90°-∠B=60°,∵cosB=,即c===24,∴b=sinB·c=×24=12;(2)在Rt△ABC中,∵a=6,b=6,∴tanA==,∴∠A=30°,∴∠B=60°,∴c=2a=12.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.变式训练:见《学练优》本课时练习“课堂达

3、标训练”第4题【类型二】构造直角三角形解决长度问题一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,试求CD的长.解析:过点B作BM⊥FD于点M,求出BM与CM的长度,然后在△EFD中可求出∠EDF=60°,利用解直角三角形解答即可.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=sin45°BC=12×=12,CM=BM=12.在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD==4,∴CD=CM-MD=12-4

4、.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型三】运用解直角三角形解决面积问题如图,在△ABC中,已知∠C=90°,sinA=,D为边AC上一点,∠BDC=45°,DC=6.求△ABC的面积.解析:首先利用正弦的定义设BC=3k,AB=7k,利用BC=CD=3k=6,求得k值,从而求得AB的长,然后利用勾股定理求得AC的长,再进一步求解.解:∵∠C=90°,∴在Rt△ABC中,sinA==,设BC=3k,则AB=7k(k>0),在Rt△BCD中,∵∠BCD=90°,∴∠BDC=

5、45°,∴∠CBD=∠BDC=45°,∴BC=CD=3k=6,∴k=2,∴AB=14.在Rt△ABC中,AC===4,∴S△ABC=AC·BC=×4×6=12.所以△ABC的面积是12.方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:解直角三角形的综合【类型一】解直角三角形与等腰三角形的综合已知等腰三角形的底边长为,周长为2+,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC中,AB=AC,BC=,∵周长为2+

6、,∴AB=AC=1.过A作AD⊥BC于点D,则BD=,在Rt△ABD中,cos∠ABD==,∴∠ABD=45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】解直角三角形与圆的综合已知:如图,Rt△AOB中,∠O=90°,以OA为半径作⊙O,BC切⊙O于点C,连接AC交OB于点P.(1)求证:BP=BC;(2)若sin∠PAO=,且PC=7,求⊙O的半径.解析:(1)连接OC,由切线的性质,可得∠OCB=90°,由OA=OC,得∠OCA=∠OAC,再由∠AOB=90°,可得出所要求证的

7、结论;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP和Rt△ACE中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC,∵BC是⊙O的切线,∴∠OCB=90°,∴∠OCA+∠BCA=90°.∵OA=OC,∴∠OCA=∠OAC,∴∠OAC+∠BCA=90°,∵∠BOA=90°,∴∠OAC+∠APO=90°,∵∠APO=∠BPC,∴∠BPC=∠BCA,∴BC=BP;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP中,∵sin∠PAO=,设OP=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。