欢迎来到天天文库
浏览记录
ID:29644068
大小:304.56 KB
页数:7页
时间:2018-12-21
《高中数学 1.3.1正弦型函数教学设计 新人教b版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§1.3.1正弦型函数的教学设计【教学目标】1、知识与技能目标:结合观览车的实例,了解周期、频率、初相、相位的定义;会用五点法画函数的简图;能借助多媒体课件,通过探索、观察参数对函数图象的影响,并概括出三角函数图象各种变换的实质和内在规律.2、过程与方法目标 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,体会数形结合以及从特殊到一般的数学思想,锻炼从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃.3、情感、态度、价值观目标 通过学习过程培养学生探索与协作的精神,提高合作学习的意识;唤起学生追求
2、真理、勇于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观.【教学重点】用五点法画正弦型函数 的简图;考察参数对函数图象的影响,理解函数图象伸缩、平移变换的实质和内在规律;【预测难点】五点法作图中x的取值;对函数图象的影响及图象伸缩、平移变换的规律.使学生学会观察图象,理解图象变化的实质,是克服这一难点的关键.【教学方法】动手实践(作图)、观察思考、合作探究的教学方法.【授课类型】新授课【课时安排】1课时【教 具】多媒体、实物投影仪xyo【教学过程】〖情景引入概念认知〗1、
3、情景引入:简单回顾上节课学习的正弦函数y=sinx的图象和性质,从y=2sinx是不是正弦函数导入课题——正弦型函数师生互动:教师提出问题,学生回答设计意图:为学生认识正弦型函数奠定基础2、概念认知:观察观缆车,建立坐标系,研究座椅位置,引出振幅、周期、频率、初相等概念.问题一:OP相对于x轴正方向的转角是什么?那么点P的纵坐标如何表示?问题二:点P绕O旋转一周所用的时间是多少?问题三:一秒钟内点P旋转的周数是多少?练一练:如果动点P以角速度4πrad/s作匀速圆周运动,那么周期、频率分别是多少?师生互动:教师通过
4、多媒体展示观缆车示意图,引导学生认识和感受,并提出问题.在学生回答的基础上,教师引导进行归纳.设计意图:通过实例,将问题转化为数学问题,引出数学概念,培养学生数学来源于实践又指导实践的辨证唯物主义观点及勇于探索的创新精神.〖自主交流合作探究〗3、探究新知:一、首先来研究形如y=Asinx的函数问题四:在同一坐标系中作函数及的简图师生互动:学生自主作图,教师巡视学生情况,有针对性的让学生展示所作图象,可以针对学生出现的错误进行讨论、指正.设计意图:通过作图,加强学生对“五点法”的理解.问题五:这两个函数的图象与y=s
5、inx的图象之间有什么关系?师生互动:以小组为单位,学生自主探索,合作交流,形成结论,在学生展示的基础上,教师从点的坐标的角度,演示图象动态变换,进行总结点评,指明振幅A对图象变换的影响是----------图象的上下伸缩.设计意图:观察图象间的关系,通过对比,探求图象变换规律,鼓励学生大胆猜想,使学生将直观问题抽象化,揭示本质,逐步培养学生由特殊到一般的解决问题方法,以及归纳概括的能力.二、研究形如y=sin(x+)的函数问题六:在同一坐标中作函数及的简图.师生互动:学生自主作图,教师巡视学生情况,有针对性的让学
6、生展示所作图象,可以针对学生出现的错误进行讨论、指正设计意图:通过作图,加强学生对“五点法”的理解.问题七:这两个函数的图象与y=sinx的图象之间有什么关系?师生互动:以小组为单位,学生自主探索,合作交流,形成结论,在学生展示的基础上,教师从点的坐标的角度,演示图象动态变换,进行总结点评,指明对图象变换的影响是----------图象的左右平移设计意图:观察图象间的关系,通过对比,探求图象变换规律,鼓励学生大胆猜想,使学生将直观问题抽象化,揭示本质,逐步培养学生由特殊到一般的解决问题方法,以及归纳概括的能力.三、
7、研究形如y=sinwx的函数问题八:在同一坐标中作函数及的简图,并寻求图象与y=sinx图象间的关系.师生互动:在前面两例的基础上,学生能快速完成图象及变换规律的探求,w对图象变换的影响是----------图象的左右伸缩.设计意图:通过函数图象的三种基础变换规律探求,培养学生主动探索问题、从一般到特殊规律的归纳概括能力.〖拓展升华总结规律〗4、拓展思维:如果在一个问题中函数图象出现不止一种变换呢?问题九:作函数图象并思考图象是由函数y=sinx的图象怎样变换得到的.师生互动:学生自主作图并探索、交流、质疑、解惑、
8、形成结论.教师总结点评图象变换规律:先平移后伸缩,先伸缩后平移设计意图:让学生对由正弦y=sinx图象变化得到函数的图象的不同方案有一个整体的认识,并在掌握图象变化本质的基础上,择优选择.〖达标检测课后作业〗5、达标检测:1、函数的振幅是,周期是,频率是,相位是,初相是.2、只需把函数的图象上所有点(),就可以得到函数的图象.A横坐标伸长到原来的2倍,纵坐标
此文档下载收益归作者所有