资源描述:
《高中数学 第三章 导数及其应用 3.2 导数的计算 第2课时 导数的运算法则课时提升作业1 新人教a版选修1-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、导数的运算法则一、选择题(每小题5分,共25分)1.关于x的函数f(x)=cosx+sina,则f′(0)等于 ( )A.0B.-1C.1D.±1【解析】选A.f′(x)=-sinx,f′(0)=0.2.(2016·临沂高二检测)若曲线f(x)=xsinx+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于 ( )A.-2B.-1C.1D.2【解析】选D.f′(x)=sinx+xcosx,f′=1,由题意得-=-1,即a=2.3.(2016·德州高二检测)函数y=(a>0)在x=x0处的导数为0,那么x0等于 ( )A.aB.±aC.
2、-aD.a2【解析】选B.y′===.由=0,得x0=±a.4.已知直线y=kx+1与曲线y=x3+ax+b相切于点(1,3),则b的值为 ( )A.3B.-3C.5D.-5【解析】选A.由点(1,3)在直线y=kx+1上,得k=2,由点(1,3)在曲线y=x3+ax+b上,得1+a+b=3,即a+b=2,y′=3x2+a,由题意得3×12+a=2.所以a=-1.所以b=3.5.(2016·武汉高二检测)正弦曲线y=sinx上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是 ( )A.∪B.[0,π)C.D.∪【解析】选A.因为(sin
3、x)′=cosx,因为kl=cosx,所以-1≤kl≤1,所以αl∈∪.二、填空题(每小题5分,共15分)6.(2016·滨州高二检测)在曲线y=上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为 .【解析】设点P(x0,y0),y′=′=(4x-2)′=-8x-3,所以tan135°=-1=-8,所以x0=2.所以y0=1.所以P点坐标为(2,1).答案:(2,1)7.(2016·天津高考)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为 .【解题指南】求出f′(x),代入x=0即可.【
4、解析】因为f′(x)=(2x+3)ex,所以f′(0)=3.答案:38.曲线y=xlnx在点(e,e)处的切线方程为 .【解析】因为y′=lnx+1,y′=2,所以切线方程为y-e=2(x-e),即2x-y-e=0.答案:2x-y-e=0三、解答题(每小题10分,共20分)9.已知函数f(x)=ax3+bx2+cx过点(1,5),其导函数y=f′(x)的图象如图所示,求f(x)的解析式.【解题指南】本题主要考查利用导数求解参数问题,观察y=f′(x)的图象可知y=f′(x)过点(1,0),(2,0),即f′(1)=0,f′(2)=0.【解析】f′
5、(x)=3ax2+2bx+c,又f′(1)=0,f′(2)=0,f(1)=5,故解得a=2,b=-9,c=12.故f(x)的解析式是f(x)=2x3-9x2+12x.10.已知函数f(x)=的图象在点M(-1,f(-1))处的切线的方程为x+2y+5=0,求函数的解析式.【解析】由于(-1,f(-1))在切线上,所以-1+2f(-1)+5=0,所以f(-1)=-2.因为f′(x)=,所以解得a=2,b=3(因为b+1≠0,所以b=-1舍去).故f(x)=.一、选择题(每小题5分,共10分)1.(2016·临沂高二检测)已知函数f(x)=x3+(b-
6、a
7、
8、)x2+(a2-4b)x是奇函数,则f′(0)的最小值是 ( )A.-4B.0C.1D.4【解析】选A.由f(x)是奇函数,得b-
9、a
10、=0,即b=
11、a
12、,所以f(x)=x3+(b2-4b)x(b≥0),f′(x)=3x2+(b2-4b),f′(0)=b2-4b=(b-2)2-4,当b=2时,f′(0)取最小值-4.2.(2016·广州高二检测)已知f(x)=x2+cosx,f′(x)为f(x)的导函数,则f′(x)的大致图象是 ( )【解析】选A.因为f(x)=x2+cosx,所以f′(x)=-sinx.又因为f′(-x)=-sin(-x)=-
13、=-f′(x),故f′(x)为奇函数,故函数f′(x)的图象关于原点对称,排除B、D,又因为f′=×-sin=-<0,排除C.二、填空题(每小题5分,共10分)3.(2015·全国卷Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .【解析】y′=1+,则曲线y=x+lnx在点(1,1)处的切线斜率为k=f′(1)=1+1=2,故切线方程为y=2x-1.因为y=2x-1与曲线y=ax2+(a+2)x+1相切,联立得ax2+ax+2=0,显然a≠0,所以由Δ=a2-8a=0⇒a=8.答案:8【补偿训练
14、】若f(x)=(2x+a)2,且f′(2)=20,则a= .【解析】f(x)=(2x+a