高中数学第一讲坐标系一平面直角坐标系导学案新人教a版选修4-4

高中数学第一讲坐标系一平面直角坐标系导学案新人教a版选修4-4

ID:27748907

大小:140.50 KB

页数:4页

时间:2018-12-05

高中数学第一讲坐标系一平面直角坐标系导学案新人教a版选修4-4_第1页
高中数学第一讲坐标系一平面直角坐标系导学案新人教a版选修4-4_第2页
高中数学第一讲坐标系一平面直角坐标系导学案新人教a版选修4-4_第3页
高中数学第一讲坐标系一平面直角坐标系导学案新人教a版选修4-4_第4页
资源描述:

《高中数学第一讲坐标系一平面直角坐标系导学案新人教a版选修4-4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一 平面直角坐标系庖丁巧解牛知识·巧学一,平面直角坐标系1.平面直角坐标系的建立在生产,生活或科技中有很多问题都是可以通过坐标系来分析解决的.解决问题的过程中,有两种情况:(1)所研究的问题中已经有坐标系,此时在给定的坐标系中求出方程即可;(2)条件中无坐标系,这时必须首先选取适当坐标系,通常总是选取特殊位置的点为原点,相互垂直的直线为坐标轴等.某地发生严重的地震灾害,各地群众纷纷捐款捐物,救灾物资分批到达.但是,有些地方因为环境很恶劣,物资不能直接送达,就派送一架飞机在1000米高的上空正对目的地以100千米/时的速度做水平飞行,那么飞机应在离目的地水

2、平距离大约多少米处抛下救灾物资,使物资能落到目的地呢?物资落下的路线是一条抛物线.物资下落的过程可分解为水平方向的匀速直线运动和竖直方向的自由落体运动.当将此抛物线放到一个合适的坐标系中解决时,就会很容易得到飞机应在离目的地水平距离400米处抛下这批救灾物资.2.求轨迹方程的一般步骤.(1)分析曲线的特征,揭示隐含条件;(2)找出曲线上与任意点有关的位置关系和满足的几何条件;(3)列出方程.方法点拨求圆锥曲线方程的常用方法:定义法、待定系数法、直接法、代入法、参数法、几何法等.关键是数形结合,建立等量关系.二、平面直角坐标系中的伸缩变换以函数y=Asin

3、(ωx+φ)的图象的形成过程为例,研究在平面直角坐标系中伸缩变换作用下的图形的变化情况.函数y=sinωx,x∈R(其中ω>0,ω≠1)的图象,可以看作是把正弦曲线上所有的点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的倍(纵坐标不变)而得到.平面直角坐标系中的伸缩变换可认为是一个坐标伸缩过程,即保持纵坐标不变,将x轴进行压缩或伸长.函数y=Asinx,x∈R(其中A>0,ω≠1)的图象,可以看作是把正弦曲线上所有点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变)而得到.平面直角坐标系中的伸缩变换可认为是一个坐标伸

4、缩过程,即保持横坐标不变,将y轴进行压缩或伸长.深化升华正弦曲线经过这两种变换后,所得到图形的形状是完全相同的.平面直角坐标系中的伸缩变换只是从说法上有所不同,本质上是一样的.应该注意到:通过一个表达式,平面直角坐标系中的坐标伸缩变换将x与y的伸缩变换统一成了一个式子,即4如果不改变坐标轴的方向和长度单位,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.设原坐标系为xOy,平移后新坐标系为x′O′y′,新坐标系的坐标原点在原坐标系中的坐标是O′(h,k),在坐标平面内的任意一点,都有两个坐标,它们有如下平移公式在新旧坐标变换和方程变换时,可

5、选择使用.问题·探究问题1究竟以什么样的方法建立平面直角坐标系,才能够使方程最为简单呢?在建立坐标系的过程中我们应该注意什么呢?探究:建立坐标系的规律:(1)当题目中有两条互相垂直的直线,以这两条直线为坐标轴;(2)当题目中有对称图形,以对称图形的对称轴为坐标轴;(3)当题目中有已知长度的线段,以线段所在直线为横轴,以端点或中点为原点,使图形上的特殊点尽可能地在坐标轴上.直角坐标系建立完后,需仔细分析曲线的特征,注意揭示隐含条件.如:已知动点P与两定点A、B的距离的平方和为122,

6、AB

7、=10,求动点P的轨迹方程.要使AB在x轴上,以AB的中点为原点建

8、立坐标系.再如:已知线段AB的长为3,平面上一动点M到定点A的距离是到定点B距离的两倍,求动点的轨迹方程.注意到动点M运动到线段AB上时,有

9、AM

10、=2

11、MB

12、,点M恰为线段AB的一个三等分点,故考虑以这个三等分点为坐标原点建立直角坐标系.再如:在相距1400米的A、B两个哨所,听到炮弹爆炸的时间相差3秒,已知声速是340米/秒,问炮弹爆炸点在怎样的曲线上?它是怎样建立直角坐标系的呢?以A、B两个哨所所在的直线为x轴,AB的中点为坐标原点,建立直角坐标系.问题2在伸缩变换下,椭圆能否变成圆?抛物线和双曲线能变成什么曲线?探究:圆锥曲线之间的图象关系.在一

13、定的伸缩变换规律下椭圆能够变成圆,而双曲线与抛物线仍然是双曲线和抛物线.如:能把椭圆=1变为中心在原点的单位圆吗?先经过平移变换把椭圆变为=1,再通过伸缩变换把此椭圆变为单位圆x″2+y″2=1.上述两种变换可合成一个变换为.按照这个道理,按照变换对于双曲线和抛物线的方程,不管进行什么样的伸缩变换(当然,把图象伸缩的无限大,或者无限小的极限位置排除在外)之后,方程特点仍然没有变,抛物线方程的二次项和一次项都没有变,双曲线的两个二次项仍然是二次项,这两个二次项之间的减号也没有变;从另外一个角度来说,把它们的图象进行压缩时,图象特点是没有变的,压缩后的图象仍

14、然是抛物线型和双曲线型的,所以它们的图象是没有变化的,仍然是双曲线和抛物线.典题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。