欢迎来到天天文库
浏览记录
ID:22820284
大小:180.72 KB
页数:23页
时间:2018-10-31
《我国财政收入影响因素分析》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
《我国财政收入影响因素分析》 目录摘要:3关键词3一、引言3二、指标体系设计4三、数据收集4四、模型建立51、散点图分析52、单因素或多变量间关系分析53、模型预模拟6五、模型检验71、计量经济学意义检验71.1多重共线性检验与解决71.2异方差检验与修正121.4序列相关性检验17六、模型的最终确定23七、政策建议23 摘要:财政收入对于国民经济的运行及社会发展具有重要影响,本文认为财政收入主要受到总税收收入、国内生产总值、其他收入和就业人口总数的影响。对我国财政收入影响因素进行了定量分析,建立了数学模型,并提出了提高我国财政收入质量的政策建议。关键词:财政收入实证分析影响因素一、引言财政收入对于国民经济的运行及社会发展具有重要影响。首先,它是一个国家各项收入得以实现的物质保证。一个国家财政收入规模大小往往是衡量其经济实力的重要标志。其次,财政收入是国家对经济实行宏观调控的重要经济杠杆。宏观调控的首要问题是社会总需求与总供给的平衡问题,实现社会总需求与总供给的平衡,包括总量上的平衡和结构上的平衡两个层次的内容。财政收入的杠杆既可通过增收和减收来发挥总量调控作用,也可通过对不同财政资金缴纳者的财政负担大小的调整,来发挥结构调整的作用。此外,财政收入分配也是调整国民收入初次分配格局,实现社会财富公平合理分配的主要工具。在我国,财政收入的主体是税收收入。因此,在税收体制及政策不变的情况下,财政收入会随着经济繁荣而增加,随着经济衰退而下降。我国的财政收入主要包括税收、国有经济收入、债务收入以及其他收入四种形式,因此,财政收入会受到不同因素的影响。从国民经济部门结构看,财政收入又表现为来自各经济部门的收入。财政收入的部门构成就是在财政收入中,由来自国民经济各部门的收入所占的不同比例来表现财政收入来源的结构,它体现国民经济各部门与财政收入的关系。我国财政收入主要来自于工业、农业、商业、交通运输和服务业等部门。因此,本文认为财政收入主要受到总税收收入、国内生产总值、其他收入和就业人口总数的影响。二、指标体系设计令财政收入(亿元)为被解释变量,总税收收入(亿元)、国内生产总值(亿元)、其他收入(亿元)、就业人口总数为(万人)为解释变量,据此建立回归模型。 三、数据收集从《2010中国统计年鉴》得到1990--2009年每年的财政收入、总税收收入、国内生产总值工、其他收入和就业人口总数的统计数据如下:obs财政收入总税收收入国内生产总值其他收入就业人口总数19902937.12821.8618667.8299.536474919913149.482990.1721781.5240.16549119923483.373296.9126923.5265.156615219934348.954255.335333.9191.046680819945218.15126.8848197.9280.186745519956242.26038.0460793.7396.196806519967407.996909.8271176.6724.666895019978651.148234.0478973682.36982019989875.959262.884402.3833.370637199911444.0810682.5889677.1925.4371394200013395.2312581.5199214.6944.9872085200116386.0415301.38109655.21218.173025200218903.6417636.45120332.71328.7473740200321715.2520017.31135822.81691.9374432200426396.4724165.68159878.32148.3275200200531649.2928778.54184937.42707.8375825200638760.234804.35216314.43683.8576400200751321.7845621.97265810.34457.9676990200861330.3554223.79314045.45552.4677480200968518.359521.59340506.97215.7277995 四、模型建立1、散点图分析2、单因素或多变量间关系分析YX1X2X3X4Y10.9989134611478530.9934790452908040.8770144886795640.983602719841508X10.99891346114785310.9937402677184690.8556377347447820.984935296593492X20.9934790452908040.99374026771846910.8561835802284710.986241165680459X30.8770144886795640.8556377347447820.85618358022847110.810940334650381X40.9836027198415080.9849352965934920.9862411656804590.8109403346503811由散点图分析和变量间关系分析可以看出被解释变量财政收入Y与解释变量总税收收入X1、国内生产总值X2、其他收入X3、就业人口总数X4呈线性关系,因此该回归模型 设为:3、模型预模拟由eviews做ols回归得到结果:DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:17:51Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C7299.5231691.8144.3146140.0006X11.0628020.02110850.349720.0000X20.0017700.0045280.3910070.7013X30.8733690.1198067.2898520.0000X4-0.1159750.026580-4.3631600.0006R-squared0.999978 Meandependentvar20556.75AdjustedR-squared0.999972 S.D.dependentvar19987.03S.E.ofregression106.6264 Akaikeinfocriterion12.38886Sumsquaredresid170537.9 Schwarzcriterion12.63779Loglikelihood-118.8886 F-statistic166897.9Durbin-Watsonstat1.496517 Prob(F-statistic)0.000000(4.314614)(50.34972)(0.391007)(7.289852)(-4.363160) 五、模型检验1、计量经济学意义检验1.1多重共线性检验与解决求相关系数矩阵,得到:CorrelationMatrixYX1X2X3X410.9989134611478530.9934790452908040.8770144886795640.9836027198415080.99891346114785310.9937402677184690.8556377347447820.9849352965934920.9934790452908040.99374026771846910.8561835802284710.9862411656804590.8770144886795640.8556377347447820.85618358022847110.8109403346503810.9836027198415080.9849352965934920.9862411656804590.8109403346503811发现模型存在多重共线性。接下来运用逐步回归法对模型进行修正:①将各个解释变量分别加入模型,进行一元回归:作Y与X1的回归,结果如下:Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C-755.6610145.2330-5.2030940.0001X11.1449940.005760198.79310.0000R-squared0.999545 Meandependentvar20556.75AdjustedR-squared0.999519 S.D.dependentvar19987.03S.E.ofregression438.1521 Akaikeinfocriterion15.09765Sumsquaredresid3455590. Schwarzcriterion15.19722Loglikelihood-148.9765 F-statistic39518.70Durbin-Watsonstat0.475046 Prob(F-statistic)0.000000作Y与X2的回归,结果如下: VariableCoefficientStd.Errort-StatisticProb. C-5222.077861.2067-6.0636740.0000X20.2076890.00554837.432670.0000R-squared0.987317 Meandependentvar20556.75AdjustedR-squared0.986612 S.D.dependentvar19987.03S.E.ofregression2312.610 Akaikeinfocriterion18.42478Sumsquaredresid96267005 Schwarzcriterion18.52435Loglikelihood-182.2478 F-statistic1401.205Durbin-Watsonstat0.188013 Prob(F-statistic)0.000000作Y与X3的回归,结果如下:DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:23:08Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C2607.879773.99883.3693580.0034X310.030730.29431134.082090.0000R-squared0.984740 Meandependentvar20556.75AdjustedR-squared0.983893 S.D.dependentvar19987.03S.E.ofregression2536.645 Akaikeinfocriterion18.60971Sumsquaredresid1.16E+08 Schwarzcriterion18.70929Loglikelihood-184.0971 F-statistic1161.589Durbin-Watsonstat1.194389 Prob(F-statistic)0.000000作与X4的回归,结果如下:DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:23:08Sample:19902009Includedobservations:20 VariableCoefficientStd.Errort-StatisticProb. C-272959.337203.65-7.3368940.0000X44.0974030.5184677.9029180.0000R-squared0.776276 Meandependentvar20556.75AdjustedR-squared0.763846 S.D.dependentvar19987.03S.E.ofregression9712.824 Akaikeinfocriterion21.29492Sumsquaredresid1.70E+09 Schwarzcriterion21.39449Loglikelihood-210.9492 F-statistic62.45611Durbin-Watsonstat0.157356 Prob(F-statistic)0.000000②依据可决系数最大的原则选取X1作为进入回归模型的第一个解释变量,再依次将其余变量分别代入回归得:作Y与X1、X2的回归,结果如下DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:23:09Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C-188.4285239.0743-0.7881590.4415X11.2815940.04947225.905680.0000X2-0.0250550.009029-2.7749080.0130R-squared0.999687 Meandependentvar20556.75AdjustedR-squared0.999650 S.D.dependentvar19987.03S.E.ofregression374.0345 Akaikeinfocriterion14.82405Sumsquaredresid2378330. Schwarzcriterion14.97341Loglikelihood-145.2405 F-statistic27118.20Durbin-Watsonstat0.683510 Prob(F-statistic)0.000000作Y与X1、X3的回归,结果如下DependentVariable:YMethod:LeastSquaresDate:11/5/14Time:23:10Sample:19902009 Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C-351.105483.15053-4.2225270.0006X10.9928130.01870753.071960.0000X31.3569360.1651098.2184100.0000R-squared0.999908 Meandependentvar20556.75AdjustedR-squared0.999898 S.D.dependentvar19987.03S.E.ofregression202.1735 Akaikeinfocriterion13.59361Sumsquaredresid694859.9 Schwarzcriterion13.74297Loglikelihood-132.9361 F-statistic92839.33Durbin-Watsonstat1.177765 Prob(F-statistic)0.000000作Y与X1、X4的回归,结果如下DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:23:10Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C11853.461824.5226.4967480.0000X11.1858860.006645178.46080.0000X4-0.1866450.026984-6.9170030.0000R-squared0.999881 Meandependentvar20556.75AdjustedR-squared0.999867 S.D.dependentvar19987.03S.E.ofregression230.8464 Akaikeinfocriterion13.85886Sumsquaredresid905931.0 Schwarzcriterion14.00822Loglikelihood-135.5886 F-statistic71206.90Durbin-Watsonstat1.459938 Prob(F-statistic)0.000000③在满足经济意义和可决系数的条件下选取X3作为进入模型的第二个解释变量,再次进行回归则:作Y与X1、X3、X2的回归,结果如下DependentVariable:YMethod:LeastSquaresDate:11/5/14Time:23:13 Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C-76.04458100.1724-0.7591370.4588X11.0859240.02980136.438810.0000X31.2108530.1334449.0738770.0000X2-0.0140730.003944-3.5679010.0026R-squared0.999949 Meandependentvar20556.75AdjustedR-squared0.999939 S.D.dependentvar19987.03S.E.ofregression155.5183 Akaikeinfocriterion13.10826Sumsquaredresid386975.0 Schwarzcriterion13.30741Loglikelihood-127.0826 F-statistic104602.9Durbin-Watsonstat1.196933 Prob(F-statistic)0.000000作Y与X1、X3、X4的回归,结果如下DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:23:13Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C6781.7641024.7456.6180030.0000X11.0686420.01451473.627640.0000X30.8910690.1079498.2545510.0000X4-0.1076390.015451-6.9666750.0000R-squared0.999977 Meandependentvar20556.75AdjustedR-squared0.999973 S.D.dependentvar19987.03S.E.ofregression103.7654 Akaikeinfocriterion12.29900Sumsquaredresid172276.1 Schwarzcriterion12.49814Loglikelihood-118.9900 F-statistic234970.9Durbin-Watsonstat1.451447 Prob(F-statistic)0.000000④可见加入其余任何一个变量都会导致系数符号与经济意义不符,故最终修正后的回归模型为:DependentVariable:Y Method:LeastSquaresDate:5/11/14Time:12:18Sample:19902009Includedobservations:20VariableCoefficientStd.Errort-StatisticProb. C-351.105483.15053-4.2225270.0006X10.9928130.01870753.071960.0000X31.3569360.1651098.2184100.0000R-squared0.999908 Meandependentvar20556.75AdjustedR-squared0.999898 S.D.dependentvar19987.03S.E.ofregression202.1735 Akaikeinfocriterion13.59361Sumsquaredresid694859.9 Schwarzcriterion13.74297Loglikelihood-132.9361 F-statistic92839.33Durbin-Watsonstat1.177765 Prob(F-statistic)0.000000(-4.222527)(53.07196)(8.218410)1.2异方差检验与修正①图示法ee与X1的散点图如下: 说明ee与X1存在单调递增型异方差性。ee与X3的散点图如下: 说明ee与X3存在单调递增型异方差性。②G-Q检验对20组数据剔除掉中间四组剩下的进行分组后,第一组(1990-1997)数据的回归结果:DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:12:54Sample:19901997Includedobservations:8VariableCoefficientStd.Errort-StatisticProb. X10.9841230.01625560.543200.0000X30.8515180.1566885.4344720.0029C-28.3427545.36993-0.6247030.5596R-squared0.999686 Meandependentvar5179.791AdjustedR-squared0.999560 S.D.dependentvar2099.840S.E.ofregression44.05899 Akaikeinfocriterion10.68893Sumsquaredresid9705.972 Schwarzcriterion10.71872Loglikelihood-39.75573 F-statistic7947.575Durbin-Watsonstat1.663630 Prob(F-statistic)0.000000 残差平方和RSS1=9705.972第二组(2002-2009)数据的回归结果:DependentVariable:YMethod:LeastSquaresDate:5/11/14Time:12:55Sample:20022009Includedobservations:8VariableCoefficientStd.Errort-StatisticProb. X11.0664040.02774738.433210.0000X30.8472280.2151143.9385030.0110C-1184.159261.8258-4.5226980.0063R-squared0.999932 Meandependentvar39824.41AdjustedR-squared0.999905 S.D.dependentvar18639.16S.E.ofregression182.0047 Akaikeinfocriterion13.52594Sumsquaredresid165628.5 Schwarzcriterion13.55573Loglikelihood-51.10375 F-statistic36705.08Durbin-Watsonstat1.326122 Prob(F-statistic)0.000000残差平方和RSS2=165628.5所以F=RSS2/RSS1=165628.5/9705.972=17.0646在给定a=5%下查得临界值,因此否定两组子样方差相同的假设,从而该总体随机项存在递增异方差性。③White方法检验WhiteHeteroskedasticityTest:F-statistic6.142010 Probability0.003919Obs*R-squared12.41812 Probability0.014498 VariableCoefficientStd.Errort-StatisticProb. C24856.5019211.301.2938480.2153X1-20.573277.549127-2.7252520.0156X1^20.0002128.04E-052.6399820.0186X3237.181378.613233.0170670.0087X3^2-0.0240730.006568-3.6652300.0023R-squared0.620906 Meandependentvar34743.00AdjustedR-squared0.519815 S.D.dependentvar49156.00S.E.ofregression34062.86 Akaikeinfocriterion23.92212Sumsquaredresid1.74E+10 Schwarzcriterion24.17105Loglikelihood-234.2212 F-statistic6.142010Durbin-Watsonstat1.560937 Prob(F-statistic)0.003919a=5%下,临界值拒绝同方差性④修正VariableCoefficientStd.Errort-StatisticProb. C-314.207443.68550-7.1924860.0000X10.9797580.008622113.63360.0000X31.4572910.06592222.106290.0000WeightedStatisticsR-squared0.999999 Meandependentvar27246.27AdjustedR-squared0.999999 S.D.dependentvar74471.17S.E.ofregression73.91795 Akaikeinfocriterion11.58127Sumsquaredresid92885.67 Schwarzcriterion11.73063Loglikelihood-112.8127 F-statistic3138195.Durbin-Watsonstat0.956075 Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.999902 Meandependentvar20556.75AdjustedR-squared0.999891 S.D.dependentvar19987.03S.E.ofregression209.0283 Sumsquaredresid742778.2Durbin-Watsonstat1.365483 (-7.192486)(113.6336)(22.10629)1.4序列相关性检验①从残差项e2与e2(-1)及e与时间t的关系图(如下)看,随机项呈现正序列相关性。 ②Q统计量检验由图可以看出,存在一阶序列相关③回归检验残差e2与e2(-1)做回归得: VariableCoefficientStd.Errort-StatisticProb. C16.8152545.696110.3679800.7174E(-1)0.3035700.2311141.3135080.2065R-squared0.092138 Meandependentvar25.28519AdjustedR-squared0.038734 S.D.dependentvar201.1252S.E.ofregression197.1916 Akaikeinfocriterion13.50553Sumsquaredresid661036.6 Schwarzcriterion13.60494Loglikelihood-126.3025 F-statistic1.725303Durbin-Watsonstat1.776498 Prob(F-statistic)0.206464e与e(-1)、e(-2)做回归得:VariableCoefficientStd.Errort-StatisticProb. C7.44976046.209120.1612180.8741E(-1)0.4195640.2444751.7161870.1067E(-2)-0.3798940.278641-1.3633800.1929R-squared0.192570 Meandependentvar16.45940AdjustedR-squared0.084912 S.D.dependentvar203.1349S.E.ofregression194.3193 Akaikeinfocriterion13.52789Sumsquaredresid566399.7 Schwarzcriterion13.67629Loglikelihood-118.7510 F-statistic1.788727Durbin-Watsonstat2.055382 Prob(F-statistic)0.201043由上表明不存在序列相关性。④D.W检验由异方差检验修正后的结果:得D.W=1.365483取a=5%,由于n=20,k=3(包含常数项),查表得:dl=1.10,du=1.54由于dl
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处