空间向量基础知识及应用

空间向量基础知识及应用

ID:22637028

大小:548.96 KB

页数:10页

时间:2018-10-30

空间向量基础知识及应用_第1页
空间向量基础知识及应用_第2页
空间向量基础知识及应用_第3页
空间向量基础知识及应用_第4页
空间向量基础知识及应用_第5页
资源描述:

《空间向量基础知识及应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、空间向量与立体几何知识网络     知识要点梳理知识点一:空间向量1.空间向量的概念  在空间,我们把具有大小和方向的量叫做向量。  注:  ⑴空间的一个平移就是一个向量。  ⑵向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。相等向量只考虑其定义要   素:方向,大小。  ⑶空间的两个向量可用同一平面内的两条有向线段来表示。2.共线向量  (1)定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平    行向量.平行于记作.当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线.  (2)共线向

2、量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使    =λ。3.向量的数量积  (1)定义:已知向量,则叫做的数量积,记作,即    。  (2)空间向量数量积的性质:    ①;    ②;    ③.  (3)空间向量数量积运算律:    ①;    ②(交换律);10/10空间向量与立体几何    ③(分配律)。4.空间向量基本定理  如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使。若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。5.空间直角坐标系:  (1)若空间的一个基底的

3、三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表    示;  (2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系,点叫原点,向量都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为平面,平面,平面;6.空间直角坐标系中的坐标  在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标.7.空间向量的直角坐标运算律:  (1)若,,则.    一个向量在直角坐标系中的坐标等于表示这个向量的有向

4、线段的终点的坐标减去起点的坐标。  (2)若,,则    ,    ,    ,    ,    ,10/10空间向量与立体几何    ;    ,.    夹角公式:.  (3)两点间的距离公式:若,,则        或。知识点三:空间向量在立体几何中的应用  1.立体几何中有关垂直和平行的一些命题,可通过向量运算来证明.   对于垂直问题,一般是利用进行证明;   对于平行问题,一般是利用共线向量和共面向量定理进行证明.  2.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为   求两个向量的夹角或其补角,而求两个向量的夹角则可以利

5、用向量的夹角公式。  3.用向量法求距离的公式   设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为(如图)。                  规律方法指导向量法在求空间角上的应用平面的法向量的求法:  设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。                     线线角的求法:10/10空间向量与立体几何  设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为。(注意:线线角的范围[00,900])线面角的求法: 

6、 设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(如图)。                   二面角的求法:  设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)                  利用法向量求空间距离  ⑴点A到平面的距离:   ,其中,是平面的法向量。  ⑵直线与平面之间的距离:   ,其中,是平面的法向量。  ⑶两平行平面之间的距离:   ,其中,是平面的法向量。10/10空间向量与立体几何空间向量是高中数学中的重要内容之一,是处理空间线线、线面、面面位置关系和夹角的重要工具,是高考考查的重要内容之一.运

7、用向量方法研究立体几何问题思路简单,模式固定,避免了几何法中作辅助线的问题,从而降低了立体几何问题的难度.本文将空间向量在立体几何中的应用的重要考点和解题方法作以解析.【考点及要求】1.理解直线的方向向量与平面法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明证明直线和平面位置关系的一些定理(包括三垂线定理).4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究集合问题中的应用.【考点归纳分析】考点1.利用

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。