资源描述:
《第四章 因式分解》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第四章 因式分解1.经历将一个多项式分解成几个整式乘积的形式的过程,体会因式分解的意义,发展运算能力.2.能用提公因式法和公式法分解因式.认识整式乘法与因式分解的关系,体会数学知识之间的相互联系.1.进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力.2.养成认真勤奋、严谨求实的科学态度.因式分解是整式的一种重要的恒等变形,它和整式乘法运算有着密切的联系,是后续学习分式化简与运算、解一元二次方程的重要基础.学生已有的因数分解、整式乘法运算的学习经验是本章学习的基础.本章在知识与技能
2、方面主要解决两个问题:什么是因式分解?怎样进行因式分解?对于第二个问题,只学习提公因式法与公式法(平方差公式与完全平方公式)这两种方法.本章教科书尽可能帮助学生从几何角度理解代数的含义,发展学生的类比思想以及从特殊到一般的思考问题的方法,帮助学生体会数学知识之间的联系.为此,教科书通过设计因数分解的例子让学生体会因数分解的必要性,继而用字母表示数体现一般化;通过类比因数分解体会因式分解的意义和因式分解的方法,体会数学知识之间的相互联系;通过经历借助拼图解释整式变形的过程,体会几何直观的作用;通过分析因
3、式分解与整式乘法之间的互逆过程,学习因式分解的方法,提高学生对知识间联系的认识.具体地,本章设计了3节内容.第1节“因式分解”,先利用993-99的例子突出与因数分解的类比,体会因式分解的必要性,然后用几何图形的拼图解释因式分解,在了解因式分解概念的基础上,体会因式分解与整式乘法的关系.第2节“提公因式法”,它的依据是乘法分配律或者单项式乘多项式的法则.对于学生来说,难点是怎样在多项式的各项中发现公因式,为此,教科书让学生从简单的多项式ab+bc的各项中发现相同因式入手,由浅入深地体会如何寻找公因式,
4、并以例题示范的形式学习用提公因式法进行因式分解及其注意事项,形成基本技能.第3节“公式法”,其关键是熟悉平方差公式、完全平方公式的式子及其特点.学生初学时的一个难点是如何根据一个多项式的形式与特点选择运用恰当的公式.为此,教科书将这两个公式编成两课时,分开教学.需要说明的是,根据《标准》的要求,本章教科书介绍了最基本的因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式).教学中应把握好这一要求,不要刻意提高要求、增加难度,另外,教科书通过设置恰当的、有一定梯度的题目,关注了学生知识技能的掌握
5、和不同层次学生的需求.【重点】1.探索分解因式的方法.2.会用提公因式法把多项式分解因式.3.会用公式法把多项式分解因式.【难点】1.因式分解的概念的理解.2.确定多项式的公因式.3.确定合适的方法分解因式.1.要引导学生多角度理解因式分解的意义.(1)类比因数分解理解因式分解.通过类比数式993-99的分解过程,帮助学生认识多项式a3-a的分解.(2)通过拼图帮助理解因式分解.通过拼图前后图形的面积不变,可以形象地解释多项式x2+2x+1变形为(x+1)2的合理性,以直观形象的方式,促进学生对因式分
6、解的理解.教师要引导学生用自己的语言说明变形过程.(3)对比整式乘法加深理解因式分解.通过对整式乘法运算与因式分解的对比,充分感受两者之间互为逆过程的关系.2.要注重发展学生的观察、发现、归纳、概括等能力.对于因式分解概念的教学,要让学生通过观察、对比整式乘法运算与因式分解,归纳概括出整式乘法运算与因式分解互为逆过程的关系.在学生经历探索因式分解方法的过程中,更要注重发展学生的观察、发现、归纳、概括等能力.探索因式分解的方法,事实上是对整式乘法运算的再认识.在教学中,教师要借助学生已有的整式乘法运算的
7、基础,给学生提供丰富的问题情境,留有充分探索与交流的时间和空间,让他们经历从整式乘法运算到因式分解的转换过程,并能用符号合理地表示出因式分解的方法.3.要坚持用整式乘法帮助学生理解因式分解,培养学生逆向思考问题的习惯.因式分解与整式乘法之间具有互为逆过程的关系.在因式分解概念的教学中,要重视运用这种关系进一步加深对因式分解的理解,在探索因式分解的方法的过程中,教师要坚持运用这种关系更好地促进学生领会提公因式法分解因式与乘法分配律或单项式乘多项式之间的联系,领会因式分解的公式法与乘法公式之间的联系,进一
8、步巩固“因式分解的结论是否正确可用整式乘法或乘法公式来检验”,从而培养学生的逆向思维.4.保证基本的运算技能,避免复杂的题型训练.运用提公因式法和公式法分解因式是学习本章内容的一个重要目标.由于因式分解在后面学习分式、解一元二次方程等内容中还可以继续巩固,因此教学中要依据教科书的要求,适当地分阶段进行必要的训练,使学生在具备基本运算技能的同时,能够明白每一步的算理.教学中要避免过于烦琐的运算,不要过分追求题目的数量和难度.另外,本章只要求在有理数范围内因