圣维南原理的理解及其在工程问题中的应用

圣维南原理的理解及其在工程问题中的应用

ID:19549023

大小:1.31 MB

页数:6页

时间:2018-10-03

圣维南原理的理解及其在工程问题中的应用_第1页
圣维南原理的理解及其在工程问题中的应用_第2页
圣维南原理的理解及其在工程问题中的应用_第3页
圣维南原理的理解及其在工程问题中的应用_第4页
圣维南原理的理解及其在工程问题中的应用_第5页
圣维南原理的理解及其在工程问题中的应用_第6页
资源描述:

《圣维南原理的理解及其在工程问题中的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、一、题目圣维南原理的理解及其在工程问题中的应用二、涉及到的弹性力学相关概念介绍1855年,圣维南在梁理论研究中提出:若在物体一小部分区域上作用一平衡力系,则此力系对物体内距该力系作用区域较远的部分不产生影响,只在该力系作用的区域附近才引起应力和变形。这就是著名的圣维南原理。圣维南原理的一种较为实用的提法是:若作用在物体局部表面上的外力,用一个静力等效的力系(具有相同的主矢和主距)代替,则离此区域较远的部分所受影响可以忽略不计[1]。三、正文部分1圣维南原理的理解1.1圣维南原理的提出背景求解弹性力学问题就是在给定边界条件下求解偏微分方程。边界条件不同,问题的解答也不一样。但是

2、要求出严格满足边界条件的精确解,有时是非常困难的,另外,对于一些实际问题,不能确切的给出面力的分布,只是知道它在某边界上的合理与合力偶的大小。于是我们会提出一个问题,能不能用一个可解的等效力系来代替它;满足合力、合力偶条件的解是否可以替换它。这个问题可由圣维南发原理来回答。1.2凭借生活经验的理解对于圣维南原理的第一种提法:若在物体一小部分区域上作用一平衡力系,则此力系对物体内距该力系作用区域较远的部分不产生影响,只在该力系作用的区域附近才引起应力和变形,可以用一个实例先简单理解。例如用钳子剪钢丝即使外力大道把钢丝剪断的程度,根据生活经验,钢丝的应力和变形仅局限于潜口附近。经

3、验表明,这一平衡力系越小,对钢丝其它部分的影响越小[3]。对于圣维南原理的另一种提法是:若作用在物体局部表面上的外力,用一个静力等效的力系(具有相同的主矢和主距)代替,则离此区域较远的部分所受影响可以忽略不计。可以这样理解:悬臂梁在端部不沿受集中力作用,基础上增加一对自相平衡的力系。再减少一对相平衡的力系,根据圣维南原理,仅在小区域那有明显差异,而在该区域之外应力几乎是相同的[1]。1.3简单应用的理解书上的例子是这样的:如图1.1所示,设有柱形构件,在两端截面的形心受到大小相等而方向相反的拉力F,如图1.1(a),如果把一端或两端的拉力变化为静力等效的力,图1.1(b)或图

4、1.1(c),则只有虚线划出的部分的应力分布有显著的改变,而其余部分所受的影响是可以不计的。如果再将两端的拉力变换为均匀分布的力,集度等于F/A,其中A为构建的横截面面积,如图1.1(d),仍然只有靠近两端部分的应力受到显著的影响。这就是说,在上述四种情况下,离开两端较远的部分的应力并没有显著的差别[2]。图1.12误差影响区域的大小以及应用时的注意事项2.1误差影响区域的大小关于影响区域的大小,古地尔通过应变能量级的分析,指出当三维实心体受局部自相平衡力系的作用时,影响区域的尺寸和载荷作用的区域尺寸量级相同。这里的“载荷作用区”对第一种提法是自相平衡力系的作用区,对第二种提

5、法是实际载荷与静力等效载荷之差所确定的区域。2.2圣维南原理应用时的注意事项(1)虽然圣维南原理还没有严格的证明,但是弹性力学的分析、计算结果都表明圣维南原理的正确性。(2)运用圣维南原理时要注意误差影响区域的大小。即圣维南原理适用在“次要边界”。因为经过变换的此力系对物体内距该力系作用区域较远的部分不产生影响,在该力系作用的区域附近才引起应力和变形。(3)利用圣维南原理可以放宽边界条件。利用圣维南原理,还可以把位移边界转化为等效的力边界。例如图2.1(a)中的悬臂梁,为混合边界问题,其左边固定端的应力分布并不知道,但由总体平衡条件可以算出其合力与合力距的大小。用合力与合力距

6、代替原未知分布力系以后,该问题就变成了一个应力边界问题如图2.1(b)。梁变形变形后如虚线所示,其左端面有一个转角。要恢复图2.1(a)中铅锤平面状态,必须在端面加一力系。显然,为了保持物体的平衡,这一附加力系是自平衡的。即图(a)(b)在左端面上的差异只是自平衡力系。由圣维南原理,其影响区的尺寸与梁的横截面尺寸量级相同[1]。图2.1(4)对于薄壁构件,使用圣维南原理时要谨慎。如图2.2所示为工字梁截面梁,在端面的两个翼缘上作用着一对大小相等、方向相反的力偶,结构力学中称为双力偶,从杆件的整个横截面范围来看,它是一个自相平衡力系,但由于腹板较薄,每个翼缘所受的弯曲应力可以传

7、递到相当远的部分。极端地,当,弯曲应力可以达梁的根部。同时注意到,左边的翼缘在力偶作用下向上弯曲,而右边的翼缘向下弯曲,显然,还将引起工字型截面的扭转。这个例子表明,当荷载作用区域大于物体受力处截面组成部分的最小尺寸时,圣维南原理无效。如果双力偶同时作用在腹板上,且双力偶的臂小于腹板厚度,圣维南原理仍然是有效的[4]。图2.2(5)应用圣维南原理,要注意“静力等效”这个条件。例如图1.1中合力F要作用在截面的形心,如果有偏移,不管它的分布如何,作用于截面形心的力F就不是静力等效的[2]。3圣维南原理在复

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。