圣维南原理在有限元分析中的应用

圣维南原理在有限元分析中的应用

ID:40280215

大小:24.50 KB

页数:3页

时间:2019-07-30

圣维南原理在有限元分析中的应用_第1页
圣维南原理在有限元分析中的应用_第2页
圣维南原理在有限元分析中的应用_第3页
资源描述:

《圣维南原理在有限元分析中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、圣维南原理在有限元分析中的应用弹性力学中一个说明局部效应的原理,是法国力学家A.J.C.B.de圣维南于1855年提出的。其内容是:分布于弹性体上一小块面积(或体积)内的载荷所引起的物体中的应力,在离载荷作用区稍远的地方,基本上只同载荷的合力和合力矩有关;载荷的具体分布只影响载荷作用区附近的应力分布。圣维南原理在实用上和理论上都有重要意义。在解决具体问题时,如果只关心远离载荷处的应力,就可视计算或实验的方便,改变载荷的分布情况,不过须保持它们的合力和合力矩等于原先给定的值。圣维南原理是定性地说明弹性力学中一大批局部效应的第一个原理有限元法基

2、本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网

3、格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑结构的离散化分析是依据圣维南原理而在

4、的,没有圣维南原理就没有离散化分析的根据圣维南原理在有限元分析中的是骨架,整个分析在其中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。