元素与集合的关系

元素与集合的关系

ID:18713285

大小:3.36 MB

页数:53页

时间:2018-09-21

元素与集合的关系_第1页
元素与集合的关系_第2页
元素与集合的关系_第3页
元素与集合的关系_第4页
元素与集合的关系_第5页
资源描述:

《元素与集合的关系》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1.元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理.5.集合的子集个数共有个;真子集有–1个;非空子集有–1个;非空的真子集有–2个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地,方程有且只有一个实根在内,等价于,或且,或且.9.闭区间上的二次函数的最值二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,若,则;,,.(2)当

2、a<0时,若,则,若,则,.10.一元二次方程的实根分布依据:若,则方程在区间内至少有一个实根.设,则(1)方程在区间内有根的充要条件为或;(2)方程在区间内有根的充要条件为或或或;(3)方程在区间内有根的充要条件为或.11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.(3)恒成立的充要条件是或.12.真值表pq非pp或qp且q真真假真真真假假真假假

3、真真真假假假真假假13.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或14.四种命题的相互关系原命题       互逆       逆命题若p则q               若q则p       互       互  互        为   为        互  否                     否           逆 

4、  逆                    否      否否命题               逆否命题   若非p则非q    互逆      若非q则非p15.充要条件(1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.17.如果函数和都是减函数,则在公共定义域内,和函数也是减

5、函数;如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.19.若函数是偶函数,则;若函数是偶函数,则.20.对于函数(),恒成立,则函数的对称轴是函数;两个函数与的图象关于直线对称.21.若,则函数的图象关于点对称;若,则函数为周期为的周期函数.22.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系

6、数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.24.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.26.互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.28.几个常见的函数方程

7、(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.29.几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.30.分数指数幂(1)(,且).(2)(,且).31.根式的性质(1).(2)当为奇数时,;当为偶数时,.32.有理指数幂的运算性质(1).(2).(3).注:若a>0,p是一个无理数,则ap表示一个确定的

8、实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).35.对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).36.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.37.对数换底不等式及其推广若,,,,则函数(1)当时,在和上为增函数.,(2)当时

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。