欢迎来到天天文库
浏览记录
ID:17474248
大小:376.00 KB
页数:9页
时间:2018-09-02
《黑龙江省大庆实验中学2017届高三考前得分训练(四)数学(文)试题含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、大庆实验中学实验一部数学(文)得分训练四一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,复数满足,则复数所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限2.已知,,则∁U( )A.B.C.D.3.“,使”是“”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知,则( )A.B.C.D.5.执行如图所示的程序框图,则输出的结果S=( )A.B.C.D.6.如图的茎叶图表示的是甲、乙两人在5次
2、综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )A.B.C.D.7.等差数列的前项和为,若,则下列结论中正确的是( )A.B.C.D.8.某几何体的三视图如图所示,则该几何体的体积是()A.B.4C.5D.69.用秦九韶算法计算多项式,当时,的值为()A.9B.24C.71D.13410.已知不等式组,所表示的平面区域为,若直线与平面区域有公共点,则实数的取值范围为( )A.B.C.D.11.给出下列三个结论:①设回归直线方程为=,当变量x增加个单位时,平均增加个单位;②若命题,,则¬;③已知直
3、线,则的充要条件是;其中正确结论的个数为( )A.0B.1C.2D.312.已知函数,,用表示中的最小值,设函数,则函数的零点个数为( )A.1B.2C.3D.4二、填空题:本大题共4小题.每小题5分,共20分.13.已知,若,则等于________14.在区间(0,1)上随机取两个实数m,n,则关于x的一元二次方程有实数根的概率为________15.过抛物线焦点的直线交抛物线于两点,若,则的中点到轴的距离等于 .16.已知圆C:,点P在直线l:上,若圆C上存在两点A、B使得,则点P的横坐标的取值范围是三.解答题:解答应写出文
4、字说明,证明过程或演算步骤.17.设△的三个内角所对的边分别为,点为△的外接圆的圆心,若满足.(1)求角的最大值;(2)当角取最大值时,己知,点为△外接圆圆弧上一点,若,求的最大值.18.骨质疏松症被称为“静悄悄的流行病“,早期的骨质疏松症患者大多数无明显的症状,针对中学校园的学生在运动中骨折事故频发的现状,教师认为和学生喜欢喝碳酸饮料有关,为了验证猜想,学校组织了一个由学生构成的兴趣小组,联合医院检验科,从高一年级中按分层抽样的方法抽取50名同学(常喝碳酸饮料的同学30,不常喝碳酸饮料的同学20),对这50名同学进行骨质检测,检测情
5、况如表:(单位:人)有骨质疏松症状无骨质疏松症状总计常喝碳酸饮料的同学22830不常喝碳酸饮料的同学81220总计302050(1)能否据此判断有97.5%的把握认为骨质疏松症与喝碳酸饮料有关?(2)记常喝碳酸饮料且无骨质疏松症状的8名同学为A,B......G,H,从8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,求A,B至少有一个被抽到的概率.附表及公式.P(k2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828
6、.19.如图,正三棱柱中,分别是线段的中点,.(1)求证:∥平面;(2)求点B到面的距离20.已知椭圆中,,且椭圆上任一点到点的最小距离为.(1)求椭圆的标准方程;(2)过点作两条倾斜角互补的直线(不重合)分别交椭圆于点,求证:.21.已知函数(Ⅰ)若曲线在处的切线过,求的值;(Ⅱ)求证:当时,不等式在上恒成立.修4-4:坐标系与参数方程]22.已知圆O和圆C的极坐标方程分别为ρ=2和ρ=4sinθ,点P为圆O上任意一点.(1)若射线OP交圆C于点Q,且其方程为θ=,求
7、PQ
8、得长;(2)已知D(2,π),若圆O和圆C的交点为A,B,
9、求证:
10、PA
11、2+
12、PB
13、2+
14、PD
15、2为定值.[选修4-5:不等式选讲]23.若a>0,b>0且2ab=a+2b+3.(1)求a+2b的最小值;(2)是否存在a,b使得a2+4b2=17?并说明理由.参考答案:ADCABDCBCCBC13.514.15.416.17.【解答】解:(1)在△ABC中由余弦定理得,;∵a+b≥2c;∴;∴;∴;∵,当且仅当a=b时取“=”;∴;即;∴;∴角C的最大值为;(2)当角C取最大值时,∵;∴△ABC为等边三角形;∴O为△ABC的中心,如图所示,D为边AB的中点,连接OD,则:OD⊥AB,且;∴O
16、A=1,即外接圆半径为1,且∠AOB=120°;∴;∴对两边平方得,;∴1=x2+y2﹣xy;∴x2+y2=xy+1≥2xy,当且仅当x=y时取“=”;∴xy≤1;∴x•y的最大值为1.18.【解答】解:(1)由表中数据
此文档下载收益归作者所有