时间序列数据的平稳性检验

时间序列数据的平稳性检验

ID:15846799

大小:38.00 KB

页数:11页

时间:2018-08-06

时间序列数据的平稳性检验_第1页
时间序列数据的平稳性检验_第2页
时间序列数据的平稳性检验_第3页
时间序列数据的平稳性检验_第4页
时间序列数据的平稳性检验_第5页
资源描述:

《时间序列数据的平稳性检验》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第五章时间序列数据的平稳性检验本章要点平稳性的定义平稳性的检验方法(ADF检验)伪回归的定义协整的定义及检验方法(AEG方法)误差修正模型的含义及表示形式第一节随机过程和平稳性原理一、随机过程一般称依赖于参数时间t的随机变量集合为随机过程。例如,假设样本观察值y1,y2…,yt是来自无穷随机变量序列…y-2,y-1,y0,y1,y2…的一部分,则这个无穷随机序列称为随机过程。随机过程中有一特殊情况叫白噪音,其定义如下:如果随机过程服从的分布不随时间改变,且二、平稳性原理如果一个随机过程的均值和方差在时间过程上

2、都是常数,并且在任何两时期的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间,就称它为平稳的。平稳随机过程的性质:均值(对所有t)方差(对所有t)协方差(对所有t)其中即滞后k的协方差[或自身协方差],是和,也就是相隔k期的两值之间的协方差。三、伪回归现象将一个随机游走变量(即非平稳数据)对另一个随机游走变量进行回归可能导致荒谬的结果,传统的显著性检验将告知我们变量之间的关系是不存在的。有时候时间序列的高度相关仅仅是因为二者同时随时间有向上或向下变动的趋势,并没有真正的联系。这种情况

3、就称为“伪回归”(SpuriousRegression)。第二节平稳性检验的具体方法一、单位根检验(一)单位根检验的基本原理DavidDickey和WayneFuller的单位根检验(unitroottest)即迪基――富勒(DF)检验,是在对数据进行平稳性检验中比较经常用到的一种方法。DF检验的基本思想:从考虑如下模型开始:由式5.1,我们可以得到:依次将式5.4…5.3、5.2代入相邻的上式,并整理,可得:(2)若>1,则当T→∞时,→∞,即对序列的冲击随着时间的推移其影响反而是逐渐增大的,很显然,此时序

4、列是不稳定的。(3)若1,则当T→∞时,1,即对序列的冲击随着时间的推移其影响是不变的,很显然,序列也是不稳定的。对于式(5.1),DF检验相当于对其系数的显著性检验,所建立的零假设是:H0:如果拒绝零假设,则称Yt没有单位根,此时Yt是平稳的;如果不能拒绝零假设,我们就说Yt具有单位根,此时Yt被称为随机游走序列(randomwalkseries)是不稳定的。方程(5.1)也可以表达成:I1过程在金融、经济时间序列数据中是最普遍的,而I0则表示平稳时间序列。从理论与应用的角度,DF检验的检验模型有如下的三个

5、:其中t是时间或趋势变量,在每一种形式中,建立的零假设都是:H0:或H0:,即存在一单位根。(5.7)和另外两个回归模型的差别在于是否包含有常数(截距)和趋势项。如果误差项是自相关的,就把(5.9)修改如下:式(5.10)中增加了的滞后项,建立在式(5.10)基础上的DF检验又被称为增广的DF检验(augmentedDickey-Fuller,简记ADF)。ADF检验统计量和DF统计量有同样的渐近分布,使用相同的临界值。(二)ADF检验模型的确定首先,我们来看如何判断检验模型是否应该包含常数项和时间趋势项。解

6、决这一问题的经验做法是:考察数据图形其次,我们来看如何判断滞后项数m。在实证中,常用的方法有两种:(1)渐进t检验。该种方法是首先选择一个较大的m值,然后用t检验确定系数是否显著,如果是显著的,则选择滞后项数为m;如果不显著,则减少m直到对应的系数值是显著的。(2)信息准则。常用的信息准则有AIC信息准则、SC信息准则,一般而言,我们选择给出了最小信息准则值的m值二、非平稳性数据的处理一般是通过差分处理来消除数据的不平稳性。即对时间序列进行差分,然后对差分序列进行回归。对于金融数据做一阶差分后,即由总量数据变

7、为增长率,一般会平稳。但这样会让我们丢失总量数据的长期信息,而这些信息对分析问题来说又是必要的。这就是通常我们所说的时间序列检验的两难问题。第三节协整的概念和检验一、协整的概念和原理有时虽然两个变量都是随机游走的,但它们的某个线形组合却可能是平稳的。在这种情况下,我们称这两个变量是协整的。比如:变量Xt和Yt是随机游走的,但变量ZtXt+Yt可能是平稳的。在这种情况下,我们称Xt和Yt是协整的,其中称为协整参数(cointegratingparameter)。为什么会有协整关系存在呢?这是因为虽然很多金融、经

8、济时间序列数据都是不平稳的,但它们可能受某些共同因素的影响,从而在时间上表现出共同的趋势,即变量之间存在一种稳定的关系,它们的变化受到这种关系的制约,因此它们的某种线性组合可能是平稳的,即存在协整关系。假如有序列Xt和Yt,一般有如下性质存在:1如果Xt~I0,即Xt是平稳序列,则a+bXt也是I0;2如果Xt~I1,这表示Xt只需经过一次差分就可变成平稳序列。那么a+bXt也是I1;3如果Xt和Y

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。