时间序列的平稳性及其检验

时间序列的平稳性及其检验

ID:39466158

大小:998.50 KB

页数:82页

时间:2019-07-04

时间序列的平稳性及其检验_第1页
时间序列的平稳性及其检验_第2页
时间序列的平稳性及其检验_第3页
时间序列的平稳性及其检验_第4页
时间序列的平稳性及其检验_第5页
资源描述:

《时间序列的平稳性及其检验》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第九章 时间序列计量经济学模型的理论与方法第一节时间序列的平稳性及其检验第二节随机时间序列模型的识别和估计第三节协整分析与误差修正模型§9.1时间序列的平稳性及其检验一、问题的引出:非平稳变量与经典回归模型二、时间序列数据的平稳性三、平稳性的图示判断四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程一、问题的引出:非平稳变量与经典回归模型⒈常见的数据类型到目前为止,经典计量经济模型常用到的数据有:时间序列数据(time-seriesdata);截面数据(cross-sectionaldata)平行/面板数

2、据(paneldata/time-seriescross-sectiondata)★时间序列数据是最常见,也是最常用到的数据。⒉经典回归模型与数据的平稳性经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础——“一致性”要求——被破怀。经典回归分析的假设之一:解释变量X是非随机变量放宽该假设:X是随机变量,则需进一步要求:(1)X与随机扰动项不相关∶Cov(X,)=0依概率收敛:(2)第(2)条是为了满足统计推断中大样本下的“一致性”特性:第(1)条是OLS估计的需要▲如果X是非平

3、稳数据(如表现出向上的趋势),则(2)不成立,回归估计量不满足“一致性”,基于大样本的统计推断也就遇到麻烦。因此:注意:在双变量模型中:表现在:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2):例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。在现实经济生活中:情况往往是实际的时间序列数据是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意

4、义的结果。⒊数据非平稳,往往导致出现“虚假回归”问题时间序列分析模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论。时间序列分析已组成现代计量经济学的重要内容,并广泛应用于经济分析与预测当中。二、时间序列数据的平稳性时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。假定某个时间序列是由某一随机过程(stochasticprocess)生成的,即假定时间序列{Xt}(t=1,2,…)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(X

5、t)=是与时间t无关的常数;2)方差Var(Xt)=2是与时间t无关的常数;3)协方差Cov(Xt,Xt+k)=k是只与时期间隔k有关,与时间t无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationarystochasticprocess)。例1.一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=t,t~N(0,2)例2.另一个简单的随机时间列序被称为随机游走(randomwalk),该序列由如下随机过程生成:Xt=Xt-1+t这

6、里,t是一个白噪声。该序列常被称为是一个白噪声(whitenoise)。由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知X1=X0+1X2=X1+2=X0+1+2……Xt=X0+1+2+…+t由于X0为常数,t是一个白噪声,因此Var(Xt)=t2即Xt的方差与时间t有关而非常数,它是一非平稳序列。容易知道该序列有相同的均值:E(Xt)=E(Xt-1)然而,对X取一阶差分(firstdifference

7、):Xt=Xt-Xt-1=t由于t是一个白噪声,则序列{Xt}是平稳的。后面将会看到:如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。事实上,随机游走过程是下面我们称之为1阶自回归AR(1)过程的特例Xt=Xt-1+t不难验证:1)

8、

9、>1时,该随机过程生成的时间序列是发散的,表现为持续上升(>1)或持续下降(<-1),因此是非平稳的;第二节中将证明:只有当-1<<1时,该随机过程才是平稳的。2)=1时,是一个随机游走过程,也是非平稳的。1阶自回归过程AR(1)又是如下k阶

10、自回归AR(K)过程的特例:Xt=1Xt-1+2Xt-2…+kXt-k该随机过程平稳性条件将在第二节中介绍。三、平稳性检验的图示判断给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程;而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。进一步的判断:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。