欢迎来到天天文库
浏览记录
ID:9519895
大小:168.50 KB
页数:8页
时间:2018-05-02
《第一讲 有理数的巧算1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第一讲有理数的巧算 有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性. 1.括号的使用 在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单. 例1计算: 分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算
2、符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化. 注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算. 例2计算下式的值: 211×555+445×789+555×789+211×445. 分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算. 解原式=(211×555+211×445)+(445×789+555×789) =211
3、×(555+445)+(445+555)×789 =211×1000+1000×789 =1000×(211+789) =1000000. 说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧. 例3计算:S=1-2+3-4+…+(-1)n+1·n. 分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法. 解S=(1-2)+(3-4)+…
4、+(-1)n+1·n. 下面需对n的奇偶性进行讨论: 当n为偶数时,上式是n/2个(-1)的和,所以有 当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有 例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少? 分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”
5、或“-”之后,所得的代数和总为奇数,故最小非负数不小于1. 现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0. 这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1. 所以,所求最小非负数是1. 说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化. 2.用字母表示数 我们先来计算(100+2)×(
6、100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22. 这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2. 于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,① 这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算. 例5计算3001×2999的值. 解3001×2999=(3000+1)(30=300=8999999. 例
7、6计算103×97×10009的值. 解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99999919. 例7计算: 分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12345,12346,12347.可设字母n=12346,那么12345=n-1,12347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1, 即原式分母的值是1,所以原式=24690. 例8计算:(2+1)(22+1)(2
8、4+1)(28+1)(216+1)(232+1). 分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了. 解原式=(2-1)(2+1)(22+1)(24+1)(2
此文档下载收益归作者所有