人教b版必修3高中数学2.1.3《分层抽样》word学案

人教b版必修3高中数学2.1.3《分层抽样》word学案

ID:9259081

大小:83.50 KB

页数:4页

时间:2018-04-25

人教b版必修3高中数学2.1.3《分层抽样》word学案_第1页
人教b版必修3高中数学2.1.3《分层抽样》word学案_第2页
人教b版必修3高中数学2.1.3《分层抽样》word学案_第3页
人教b版必修3高中数学2.1.3《分层抽样》word学案_第4页
资源描述:

《人教b版必修3高中数学2.1.3《分层抽样》word学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.3分层抽样一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。二、【学习目标】理解分层抽样的概念,会用分层抽样方法从总体中抽取样本。三、【学法指导】1、分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践的应用更为广泛.2、分层抽样的一个重要问题是一个总体如何分层。分层抽样中分多少层,要视具体情况而定。总的原则是:层内样本的差异要小,而层与层之间的差异尽可能地大,否则将失去分层的意义。四、自主学习1.分层抽样:  

2、2.三种抽样方法的区别与联系  ①在三种抽样方法中,简单随机抽样是最基本、最简单的抽样方法,其他两种抽样方法都是建立在它的基础之上的。  ②三种抽样方法的共同点是它们都是等可能抽样,体现了抽样的公平性。③三种抽样方法各有特点和适用范围,在抽样实践中要根据具体情况选取相应的抽样方法。【典例分析】例1:某校有在校高中生共1600人,其中高一学生520人,高二学生500人,高三学生580人。如果想通过抽查其中的80人,来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较少,问应采用怎样的抽样方例2:一个地区共有5个乡镇人口

3、30000人,其中人口比例为3∶2∶5∶2∶3。要从这30000人中抽取300个进行癌症发病分析。已知癌症与不同地理位置及水土有关,问应该采用什么样的抽样方法并写出具体过程? 例3:一个单位的职工有500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人。为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?五、合作探究1.分层抽样又称为分类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行()A.每层等可能抽样B.每层不等可能

4、抽样C.所有层用同一抽样比,等可能抽样D.所有层抽同样多样本容量,等可能抽样2.为了保证分层抽样时,每个个体等可能的被抽取,必须()A.不同层以不同的抽样比抽样B.每层等可能的抽样C.每层等可能的抽取一样多个的样本,即若有k层,每抽样x0个,n=n0kD.每层等可能抽取不一样多个样本,样本容量为ni=(i=1,…,k),即按比例分配样本容量,其中:N是总体的总个数,Ni是第i层的个数。3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随

5、机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段。如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都

6、不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样4.一个工厂有若干条流水线,今采用分层抽样方法从全厂某天的2048件产品中抽取一个容量为128的样本进行质量检查。若某一条流水线上这一天生产256件产品,则从该条流水线上抽取的产品件数为。5.某县有30个乡,其中山区6个,丘陵地区12个,平原地区12个,要从中抽出5个乡进行调查,则应在山区中抽乡,丘陵地区抽乡,在平原地区抽乡。6.一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一

7、个等差数列,则乙生产线生产了   件产品.六、总结升华1、知识与方法:2、数学思想及方法:七、当堂检测(见大屏幕)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。