lorenz系统动力学行为的matlab仿真与分析

lorenz系统动力学行为的matlab仿真与分析

ID:9219569

大小:44.00 KB

页数:12页

时间:2018-04-23

lorenz系统动力学行为的matlab仿真与分析_第1页
lorenz系统动力学行为的matlab仿真与分析_第2页
lorenz系统动力学行为的matlab仿真与分析_第3页
lorenz系统动力学行为的matlab仿真与分析_第4页
lorenz系统动力学行为的matlab仿真与分析_第5页
资源描述:

《lorenz系统动力学行为的matlab仿真与分析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Lorenz系统动力学行为的MATLAB仿真与分析第25卷第5期2007年10月水电能源科学WaterResourcesandPowerVo1.25No.5OCt.2007文章编号:1000—7709(2007)05—0121—04Lorenz系统动力学行为的MATLAB仿真与分析姚齐国(1.华中科技大学水电与数字化工程学院,湖北武汉430074;2.武汉工程大学电气信息学院,湖北武汉430073)摘要;以Lorenz系统为例,采用相图和功率谱两种方法,借助MATLAB软件对之进行仿真研究,观察状态变量在时域和频域中的变化来了解系统的非线性特性.通过调整控制参

2、数,观察Lorenz系统动力学行为的演变过程,得知Lorenz系统可通过Pomeau--Manneville途径走向混沌,间歇性与Hopf分岔和倍周期分岔有关.关键词:Lorenz系统;混沌;MATLAB;仿真与分析中图分类号:TP391;O415.5文献标志码:A1概述混沌是学术界对非线性系统研究领域非常活跃的前沿课题.混沌现象是指确定性系统中出现的一种类似随机过程的行为.一个非线性动力学系统,在系统参数达到一定匹配时便会出现混沌现象.在物质世界中,混沌现象无处不在.一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,其特性

3、有如下几方面:①振荡信号的功率谱连续分布并可能为带状分布,表明振荡为非周期性,说明了信号貌似噪声的原因;②在相空间,该系统相邻轨道线彼此以指数规律迅速分离,从而导致对初始值的极端敏感性,使系统的行为长期不可预测;③在轨道线存在的相空间的某一特定的有界部分内,轨线具有遍历性和混合性L1].追索混沌的发展历程,可以从Poincare'(庞加莱)开始,见文献E3].Lorenz等学者先后在天气,对流,斜坡等现象及水轮机,发电机,激光器等真实物理系统中发现Lorenz系统可作为许多现实混沌运动的典型模型,但对Lorenz系统通向混沌的途经研究甚少.MATLAB是集数值

4、运算,符号运算,数据可视化,数据图文字统一处理,系统动态仿真等功能于一体的数学软件具有很高的编程效率,在线性代数,矩阵分析,数值计算及优化,系统动力学,建模与仿真等领域中得到广泛应用.混沌理论研究的是非线性问题,难以用解析式表达,只能采用数值解法,而MATLAB在这方面便可展示其强大的潜能L4].本文通过采用相图和功率谱两种方法,借助MATLAB软件对Lorenz系统通向混沌的途径进行仿真研究,观察状态变量在时域和频域中的变化来了解系统的非线性特性,并通过调整其控制参数观察Lorenz系统动力学行为的演变过程得出有意义的结论.2仿真方法Lorenz系统的动力学

5、行为是由控制参数a,6,C决定的.为观察系统的动力学特性,可采用相图,功率谱,关联维数和Lyapunov指数等方法有选择地研究控制参数沿参数空间中轨线变化时Lorenz系统的演化过程,相图和功率谱直观.相空间就是由研究的物理量本身作为坐标分量所构成的广义空间,系统的任意状态相当于相空间中的一个点,系统状态随时间变化的过程对应于点在相空间中的变化,所有点的集合便构成了相图.非线性系统随时间的演变将趋向于维数比原来相空间低的极限集合——吸引子.通常的简单吸引子有不动点,极限环和环面,随系统参数的改变简单吸引子可发展为奇怪吸引子.像这种当控制参数变化到某个临界值时使

6、系统的动力学收稿日期:2007—07—16,修回日期:2007—08—26作者简介:姚齐国(1966一),男,副教授,博士,研究方向为系统建模与仿真,优化运算与运行,电路理论分析与应用,微机控制技术,E—mail:yaoqiguo@163.corn?l22?水电能源科学2007年性态发生定性变化的现象称为分岔_L5].1981年,Eckmann曾对各种可能的分岔现象进行了研究,归纳出走向混沌的三条途径:Feigenbaum途径(即通过岔状分岔产生混沌),Ruelle—Takens—Newhouse途径(即通过Hopf分岔产生混沌),Pomeau—Mannevi

7、lle途径(即通过阵发产生混沌).功率谱分析是观察分岔和混沌的重要方法.由于混沌系统是非周期的,所以功率谱是连续的,同时,混沌运动极为复杂,在倍周期分岔中,每分岔一次,功率谱中就出现一批对应新分频及倍频的峰,因此混沌的谱不是平谱,即谱中会出现噪声背景和宽峰.3实验结果与分析在MATLAB中首先建立Lorenz方程的M函数Lorenz(t,z),然后编制采用四阶Runge—Kutta方法对Lorenz方程进行求解MATLAB程序,设5O0—5O1005OO(a)x-y和一=臼g相图置初始条件为(一11.2,一8.4,33.4),仿真时间为0~40S.选择参数空间

8、中的两条轨线分别为a一22,6=5,C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。