2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案

2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案

ID:9194143

大小:1.36 MB

页数:18页

时间:2018-04-21

2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案_第1页
2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案_第2页
2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案_第3页
2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案_第4页
2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案_第5页
资源描述:

《2017届黑龙江省哈三中高三下学期第一次高考模拟理科数学试题及答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、哈三中2014届高三下学期第一次高考模拟数学理试题考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共60分)一、选择题(

2、本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合,,,则集合的元素个数为A.B.C.D.2.若是虚数单位,则复数的实部与虚部之积为A.B.C.D.3.若表示两个不同的平面,表示两条不同的直线,则的一个充分条件是·18·A.B.C.D.4.若,则的值为A.B.C.D.开始输入N输出S结束是否5.若按右侧算法流程图运行后,输出的结果是,则输入的的值为A.B.C.D.6.若变量满足约束条件,则目标函数的最小值为A.B.C.D.7.直线截圆所得劣弧所对圆心角为22

3、22正视图俯视图侧视图A.B.C.D.8.如图所示,是一个空间几何体的三视图,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是A.B.C.D.9.等比数列中,若,则的值是·18·A.B.C.D.10.在二项式的展开式中只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项都互不相邻的概率为A.B.C.D.11.设、、是双曲线上不同的三个点,且、连线经过坐标原点,若直线、的斜率之积为,则该双曲线的离心率为A.B.C.D.12.在平面直角坐标系中,已知是函数的图象上的动点,该曲线在点处

4、的切线交轴于点,过点作的垂线交轴于点.则的范围是A.B.C.D.哈尔滨市第三中学第一次高考模拟考试数学试卷(理工类)第Ⅱ卷(非选择题,共90分)·18·二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知,由不等式,,,归纳得到推广结论:,则实数14.五名三中学生中午打篮球,将校服放在篮球架旁边,打完球回教室时由于时间太紧,只有两名同学拿对自己衣服的不同情况有种.(具体数字作答)15.已知,动点满足,则的最大值为16.在中,内角所对的边长分别为,已知角为锐角,且,则实数

5、范围为三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)数列满足,等比数列满足.(I)求数列,的通项公式;(II)设,求数列的前项和.18.(本小题满分12分)某高中毕业学年,在高校自主招生期间,把学生的平时成绩按“百分制”·18·折算,排出前名学生,并对这名学生按成绩分组,第一组,第二组,第三组,第四组,第五组,如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数O0.020.040.067580

6、8590951000.080.010.030.050.07为60.(I)请在图中补全频率分布直方图;(II)若大学决定在成绩高的第,,组中用分层抽样的方法抽取名学生进行面试.①若大学本次面试中有、、三位考官,规定获得两位考官的认可即面试成功,且面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为、,,求甲同学面试成功的概率;②若大学决定在这名学生中随机抽取名学生接受考官的面试,第组中有名学生被考官面试,求的分布列和数学期望.·18·19.(本小题满分12分)如图,在四棱锥中,底面为菱形,

7、,为的中点.(I)若,求证:平面平面;(II)若平面平面,且,点在线段上,试确定点的位置,使二面角大小为,并求出的值.20.(本小题满分12分)若点是抛物线上一点,经过点的直线与抛物线交于两点.(I)求证:为定值;(II)若点与点不重合,问的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.·18·21.(本小题满分12分)设,函数.(Ⅰ)当时,求在内的极值;(Ⅱ)设函数,当有两个极值点,()时,总有,求实数的值.(其中是函数的导函数.)请考生在第22、23、24三题中任选一题作答,如果多做,则按

8、所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,是的⊙直径,与⊙相切于,为线段上一点,连接、分别交⊙于、两点,连接交于点.(Ⅰ)求证:、、、四点共圆.OBACEFDG(Ⅱ)若为的三等分点且靠近,,·18·,求线段的长.23.(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。