欢迎来到天天文库
浏览记录
ID:8928284
大小:222.50 KB
页数:8页
时间:2018-04-12
《实数完备性的等价命题及证明》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性.与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2(单调有界定理) 任何单调有界数列必定收敛.定理1.3(区间套定理) 设为一区间套:.则存在唯一一点定理1.4(有限覆盖定理) 设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5(聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6(柯
2、西准则) 数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3)基本要求类:(4)~(7)阅读参考类:(8)~(10)习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(1)(用确界定理证明单调有界定理)(2)(用单调有界定理证明区间套定理)(3
3、)(用区间套定理证明确界原理)*(4)(用区间套定理证明有限覆盖定理)*(5)(用有限覆盖定理证明聚点定理)*(6)(用聚点定理证明柯西准则)*(7)(用柯西准则证明单调有界定理)(1)(用确界定理证明单调有界定理)〔证毕〕(返回)(2)(用单调有界定理证明区间套定理)设区间套.若另有使 ,则因.[证毕][推论]设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(返回)(3)(用区间套定理证明确界原理)证明思想:构造一个区间套,使其公共点即为数集的上确界.设,有上界.取;,再令如此无限进行下去,得
4、一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕](返回)*(4)(用区间套定理证明有限覆盖定理)设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.[证毕][说明]当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成
5、立.(返回)*(5)(用有限覆盖定理证明聚点定理)设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕][推论(致密性定理)]有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称
6、聚点.(返回)*(6)(用聚点定理证明柯西准则) 柯西准则的必要性容易由数列收敛的定义直接证得,这里只证其充分性.已知条件: 当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.[证毕](返回)*(7)(用柯西准则证明单调有界原理) 设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了
7、对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限.[证毕]在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.[例]证明“是点集的聚点”的以下三个定义互相等价:(i)内含有中无限多个点(原始定义);(ii)在内含有中至少一个点;(iii),时,使.证:(i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii
8、)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]
此文档下载收益归作者所有