欢迎来到天天文库
浏览记录
ID:8839009
大小:20.50 KB
页数:2页
时间:2018-04-09
《数量关系之排列组合》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数量关系之排列组合排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。【例1】从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?A.240B.310C.720D.1080【解析】此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。【例2】某单位邀请
2、10位教师中的6位参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。A.84B.98C.112D.140【解析】按要求:甲、乙不能同时参加分成以下几类:a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;b.乙参加,甲不参加,同(a)有56种;c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。故共有56+56+28=140种。【例3】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A)28
3、0种(B)240种(C)180种(D)96种【解析】由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=60种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。【例4】5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?A.4240B.4320C.4450D.4480【解析】把3个女生视为一个元素,与5个男生进行排列,共有A(6,6)=
4、6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6)×A(3,3)=4320(种)。【例5】五人排队甲在乙前面的排法有几种?A.60B.120C.150D.180【解析】五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。【例6】若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队
5、方法?A.9B.12C.15D.20【解析】先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。【例7】将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?A.21B.28C.32D.48【解析】解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。其中第一个板前面的
6、球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是C(7,2)=21种。【例8】有多少种方法可以把100表示为(有顺序的)3个自然数之和?()A.4851B.1000C.256D.10000【解析】100可以想象为100个1相加的形式,现在我们要把这100个1分成3份,那么就相等于在这100个1内部形成的99个空中,任意插入两个板,这样就把它们分成了三个部分。而从99个空任意选出两个空的选法有:C(99,
7、2)=99×98/2=4851(种);故选A。上饶中公教育祝您考试成功!!!
此文档下载收益归作者所有