欢迎来到天天文库
浏览记录
ID:8758773
大小:527.50 KB
页数:20页
时间:2018-04-06
《第27章《圆》章末测2015年华师大版九年级初三数学下册》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十七章圆章末测试(一)总分120分120分钟农安县合隆中学徐亚惠一.选择题(共8小题,每题3分)1.如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于( )A.15°B.20°C.25°D.30°2.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )A.B.C.D.3.两圆的半径分别为2cm,3cm,圆心距为2cm,则这两个圆的位置关系是( )A.外切B.相交C.内切D.内含4.如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r
2、为( )A.12B.8C.5D.35.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为( )A.90°B.120°C.150°D.180°6.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是( )A.20πcm2B.20cm2C.40πcm2D.40cm27.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为( )A.B.C.D.8.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽
3、子的高是( )cm.(不考虑接缝)A.5B.12C.13D.14二.填空题(共6小题,每题3分)9.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 _________ cm.10.如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是 _________ .11.已知⊙O1与⊙2外切,圆心距为7cm,若⊙O1的半径为4cm,则⊙O2的半径是 _________ c
4、m.12.如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是 _________ .13.如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB= _________ .14.如图,△ABC是⊙O的内接三角形,如果∠AOC=100°,那么∠B= _________ 度.三.解答题(共10小题)15.(6分)如图,在半径为5cm的⊙O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.16(6分).如图,已知⊙O的直径AB与
5、弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为5,cos∠BCD=0.8,求线段AD与BF的长.17.(6分)如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.18.(8分)如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,(1)请探索OF和BC的关系并说明理由;(2)若∠D=30°,BC=1
6、时,求圆中阴影部分的面积.(结果保留π)19(8分).如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.20.(8分)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.21.(8分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)
7、若AB=3DE,求tan∠ACB的值.22(8分).如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.23(10分).如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.24.(10分)如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=6
8、0°,OC=2.(1)求OE和CD的长;(2)求图中阴影部分的面积.第二十七章圆章末测试(一)参考答案与试题解析一.选择题(共8小题)1.如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于( )A.15°B.20°C.25°D.30°考点:圆周角定理;垂径定理.专题:计算题.分析:由在⊙O中,OD⊥BC,根据垂径定理的即可求得:=,然后利用圆周角定理求解即可求得答案.解答:解:∵在
此文档下载收益归作者所有