欢迎来到天天文库
浏览记录
ID:8735675
大小:128.00 KB
页数:8页
时间:2018-04-06
《2017年高考数学考前回扣教材7解析几何》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、回扣7 解析几何1.直线方程的五种形式(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y轴的直线).(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).(3)两点式:=(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:+=1(a、b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax+By+C=0(其中A,B不同时为0).2.直线的两
2、种位置关系当不重合的两条直线l1和l2的斜率存在时:(1)两直线平行l1∥l2⇔k1=k2.(2)两直线垂直l1⊥l2⇔k1·k2=-1.提醒:当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.3.三种距离公式(1)A(x1,y1),B(x2,y2)两点间的距离:
3、AB
4、=.(2)点到直线的距离:d=(其中点P(x0,y0),直线方程为Ax+By+C=0).(3)两平行线间的距离:d=(其中两平行线方程分别为l1:Ax+By+C1=0,l2:Ax+By+C2=0).提醒:应用两平行线间距离公式时,注意两平行线方程中x,y的系数
5、应对应相等.4.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法.6.圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义
6、PF1
7、+
8、PF2
9、=2a(2a>
10、F1F2
11、)
12、
13、PF1
14、-
15、PF2
16、
17、=2a(2a<
18、F1F2
19、)
20、PF
21、=
22、PM
23、点F不在直线l上,PM⊥l于M标准方
24、程+=1(a>b>0)-=1(a>0,b>0)y2=2px(p>0)图形几何性质范围
25、x
26、≤a,
27、y
28、≤b
29、x
30、≥ax≥0顶点(±a,0),(0,±b)(±a,0)(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0)(,0)轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e==(01)e=1准线x=-渐近线y=±x7.直线与圆锥曲线的位置关系判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断.弦长公式:
31、AB
32、=
33、x1-x2
34、=
35、y1-y2
36、.8.范围、最值问题的常用解法(1)几何法①直线外一定点P到
37、直线上各点距离的最小值为该点P到直线的垂线段的长度.②圆C外一定点P到圆上各点距离的最大值为
38、PC
39、+R,最小值为
40、PC
41、-R(R为圆C的半径).③过圆C内一定点P的圆的最长的弦即为经过点P的直径,最短的弦为过点P且与经过点P的直径垂直的弦.④圆锥曲线上本身存在最值问题,如(ⅰ)椭圆上两点间最大距离为2a(长轴长);(ⅱ)双曲线上两点间最小距离为2a(实轴长);(ⅲ)椭圆上的点到焦点的距离的取值范围为[a-c,a+c],a-c与a+c分别表示椭圆焦点到椭圆上点的最小与最大距离;(ⅳ)在抛物线上的点中,顶点与抛物线的准线距离最近.(2)代数法把要求的最值表
42、示为某个参数的解析式,然后利用函数、最值、基本不等式等进行求解.9.定点、定值问题的思路求解直线或曲线过定点问题的基本思路是把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.求证某几何量为定值,首先要求出这个几何量的代数表达式,然后对表达式进行化简、整理,根据已知条件列出必要的方程(或不等式),消去参数,最后推出定值.10.解决存在性问题的解题步骤第一步:先假设存在,引入参变量,根据
43、题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.2.易忽视直线方程的几种形式的限制条件,如根据直线在两轴上的截距相等设方程时,忽视截距为0的情况,直接设为+=1;再如,过定点P(x0,y0)的直线往往忽视斜率不存在的情况直接设为y-y0=k(x-x0)等.3.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直
44、线斜率为0.4.在解析几何中,研究两条直线的位置关系时,要注意有可能这两条直线重
此文档下载收益归作者所有