课题:3.2圆的轴对称性(1)教案

课题:3.2圆的轴对称性(1)教案

ID:8691877

大小:263.00 KB

页数:3页

时间:2018-04-05

课题:3.2圆的轴对称性(1)教案 _第1页
课题:3.2圆的轴对称性(1)教案 _第2页
课题:3.2圆的轴对称性(1)教案 _第3页
资源描述:

《课题:3.2圆的轴对称性(1)教案 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:3.2圆的轴对称性(1)教学目标1.使学生理解圆的轴对称性.2.掌握垂径定理.3.学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题.教学重点垂径定理是圆的轴对称性的重要体现,是今后解决有关计算、证明和作图问题的重要依据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用.教学难点垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比较,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点.教学关键理解圆的轴对称性.教学环节的设计这节课我通过七个环节来完

2、成本节课的教学目标,它们是:复习提问,创设情境;引入新课,揭示课题;讲解新课,探求新知;应用新知,体验成功;目标训练,及时反馈;总结回顾,反思内化;布置作业,巩固新知.一、复习提问,创设情境1.教师演示:将一等腰三角形沿着底边上的高对折,启发学生共同回忆等腰三角形是轴对称图形,同时复习轴对称图形的概念;ABCDOE2.提出问题:如果以这个等腰三角形的顶点为圆心,腰长为半径作圆,得到的圆是否是轴对称图形呢?(教师用教具演示,学生自己操作)二、引入新课,揭示课题1.在第一个环节的基础上,引导学生归纳得出结论:圆是轴对称图形,每一条直径所在的

3、直线都是对称轴.强调:(1)对称轴是直线,不能说每一条直径都是它的对称轴;(2)圆的对称轴有无数条.判断:任意一条直径都是圆的对称轴()设计意图:让学生更好的理解圆的轴对称轴新性,为下一环节探究新知作好准备.三、讲解新课,探求新知先按课本进行合作学习1.任意作一个圆和这个圆的任意一条直径CD;2.作一条和直径CD的垂线的弦,AB与CD相交于点E.提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?⌒⌒⌒⌒在学生探索的基础上,得出结论:(先介绍弧相等的概念)①EA=EB;②AC=BC,AD=BD.理由如下:∵∠OEA=

4、∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,⌒⌒⌒⌒∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合.∴EA=EB,AC=BC,AD=BD.思考:你能利用等腰三角形的性质,说明OA平分CD吗?(课内练习1)ABCDOE注:老教材这个内容放在圆心角、圆周角之后,垂径定理完全可以不用圆的轴对称性来证,可用等腰三角形的性质来证明,现在只能证前面一个(略).然后把此结论归纳成命题的形式:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.垂径定理的几何语言⌒⌒⌒⌒∵CD为直径,CD⊥AB(OC⊥AB)∴EA=EB,

5、AC=BC,AD=BD.⌒四、应用新知,体验成功例1已知AB,如图,用直尺和圆规求作这条弧的中点.(先介绍弧中点概念)作法:⒈连结AB.⒉作AB的垂直平分线CD, 交弧AB于点E.⌒点E就是所求弧AB的中点.变式一:求弧AB的四等分点.思路:先将弧AB平分,再用同样方法将弧AE、弧BE平分.(图略)有一位同学这样画,错在哪里?1.作AB的垂直平分线CD2.作AT、BT的垂直平分线EF、GH(图略)⌒教师强调:等分弧时一定要作弧所对的弦的垂直平分线.变式二:你能确定弧AB的圆心吗?方法:只要在圆弧上任意取三点,得到三条弦,画其中两条弦的垂

6、直平分线,交点即为圆弧的圆心.OABC例2一条排水管的截面如图所示.排水管的半径OB=10,水面宽AB=16,求截面圆心O到水面的距离OC.思路:先作出圆心O到水面的距离OC,即画OC⊥AB,∴AC=BC=8,在Rt△OCB中,∴圆心O到水面的距离OC为6.例3已知:如图,线段AB与⊙O交于C、D两点,且OA=OB.求证:AC=BD.思路:作OM⊥AB,垂足为M,∴CM=DM∵OA=OB,∴AM=BM,∴AC=BD.概念:圆心到圆的一条弦的距离叫做弦心距.小结:1.画弦心距是圆中常见的辅助线;2.半径(r)、半弦、弦心距(d)组成的直角

7、三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长.注:弦长、半径、弦心距三个量中已知两个,就可以求出第三个.五、目标训练,及时反馈1.已知⊙0的半径为13,一条弦的AB的弦心距为5,则这条弦的弦长等于.答案:24⌒⌒2.如图,AB是⊙0的中直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是()A.∠COE=∠DOEB.CE=DEC.OE=BED.BD=BC答案:C3.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为()A.3B.6cmC.cmD.9cm答案:A注:圆内过定点M的弦中,最长的弦是过定点M的

8、直径,最短的弦是过定点M与OM垂直的弦,此结论最好让学生记住,课本作业题也有类似的题目.4.如图,⊙O的直径为10,弦AB长为8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。