欢迎来到天天文库
浏览记录
ID:8679406
大小:83.50 KB
页数:5页
时间:2018-04-04
《2015年秋人教b版必修一名师精品:1.1.1《集合的概念》教案设计教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、示范教案1.1.1 集合的概念教学分析 集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这
2、样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.三维目标 1.通过实例了解集合及空集的概念,体会元素与集合的“属于”关系,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.重点难点 教学重点:集合的基本概念.教学难点:理解空集的概念.课时安排 1课时导入新课 思路1.军训前学校通知:9月1日8点,高一年级学生到操
3、场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.思路2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆、举例和互相交流自己举的例子.与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.推进新课 ①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班
4、上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看出元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有
5、什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.[来源:学科网ZXXK]②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素
6、是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.活动:先让学生阅读课本,教师指定学生展示结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N、Z、Q、R不能再表示其他的集合,这是专用的集合表示符号,类似于110、119等专用电话号码一样.以后,我们会经常用到这些常见的数集,要求熟练掌握.讨论结果:常见数集的专用符号.N:非负整数集(或自然数集)(全体非负整数的集合);N+或N*:正整
7、数集(非负整数集N内排除0的集合);Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合);R:实数集(全体实数的集合).活动:(1)方程x2+1=0没有实数解.(2)空集记为.讨论结果:(1)不能.因为方程x2+1=0没有实数根.(2)空集.思路1例1下列各组对象不能组成集合的是( )A.大于6的所有整数 B.高中数学的所有难题C.被3除余2的所有整数D.函数y=图象上所有的点活动:学生先思考、讨论集合元素的性质,教师指导学生解此类选择题要逐项判断.判断一组对象能否构成集合,关键是看它是否满足集合元素的确定性.选项A、C、D中的元
8、素符合集合的确定性;而选项B中,难题没有标准,不符合集合元素的确定性,不能构成集
此文档下载收益归作者所有