欢迎来到天天文库
浏览记录
ID:8677656
大小:27.00 KB
页数:2页
时间:2018-04-04
《2013年北师大版八年级数学下册期中考试知识点复习-北师大版初二八年级》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章一元一次不等式和一元一次不等式组一.不等关系※1.一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.※2.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数:大于等于0(≥0)、0和正数、不小于0非正数:小于等于0(≤0)、0和负数、不大于0二.不等式的基本性质※1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>
2、b,并且c>0,那么ac>bc,.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么acb,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果ab,则a-b>0a=b,则a-b=0a3、.三.不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2.不等式的解可以有无数多个,一般是在某个范围内的所有数.※3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①定点:有等号的是实心圆点,无等号的是空心圆圈;②方向:大向右,小向左四.一元一次不等式:※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当4、不等式两边都乘以一个负数时,不等号要改变方向.※3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向改变的问题)※4.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设:设出适当的未知数;③列:根据题中的不等关系,列出不等式;④解:解出所列的不等式的解集;⑤答:写出答案,并检验答案是否符合题意.五.一元一次不等式与一次函数新课标第一网5、六.一元一次不等式组※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a6、章分解因式一.分解因式新7、课8、标9、第10、一11、网※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.※2.因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二.提公共因式法※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.※2.概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提12、公因式法的理论依据是乘法对加法的分配律,a·b+a·c=a·(b+c)※3.易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提彻底;WwW.xkB1.cOm(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.三.运用公式法※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2.主要公式:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,13、且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5.因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)因式分解的最后结果必须是几个整式的乘
3、.三.不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2.不等式的解可以有无数多个,一般是在某个范围内的所有数.※3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①定点:有等号的是实心圆点,无等号的是空心圆圈;②方向:大向右,小向左四.一元一次不等式:※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当
4、不等式两边都乘以一个负数时,不等号要改变方向.※3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向改变的问题)※4.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设:设出适当的未知数;③列:根据题中的不等关系,列出不等式;④解:解出所列的不等式的解集;⑤答:写出答案,并检验答案是否符合题意.五.一元一次不等式与一次函数新课标第一网
5、六.一元一次不等式组※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a
6、章分解因式一.分解因式新
7、课
8、标
9、第
10、一
11、网※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.※2.因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二.提公共因式法※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.※2.概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提
12、公因式法的理论依据是乘法对加法的分配律,a·b+a·c=a·(b+c)※3.易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提彻底;WwW.xkB1.cOm(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.三.运用公式法※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2.主要公式:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,
13、且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5.因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)因式分解的最后结果必须是几个整式的乘
此文档下载收益归作者所有