资源描述:
《中考数学真题专练《相似三角形(一)》专题分项冲刺题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
中考数学真题专练《相似三角形(一)》专题分项冲刺题中考数学真题分项汇编(全国通用)专题15相似三角形一.选择题1.(湖南衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为的雷锋雕像,那么该雕像的下部设计高度约是( )(结果精确到.参考数据:,,)A.B.C.D.2.(山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )A.平移B.旋转C.轴对称D.黄金分割3.(浙江丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段,则线段的长是( )
1中考数学真题专练《相似三角形(一)》专题分项冲刺题A.B.1C.D.24.(湖南湘潭)在中(如图),点、分别为、的中点,则( )A.B.C.D.5.(浙江绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片,其中,,,,,则剪掉的两个直角三角形的斜边长不可能是( )A.B.C.10D.6.(甘肃武威)若,,,则( )A.B.C.D.7.(云南)如图,在ABC中,D、E分别为线段BC、BA的中点,设ABC的面积为S,EBD的面积为S.则=( )A.B.C.D.8.(浙江舟山)如图,在和中,,点A在边的中点上,若,
2中考数学真题专练《相似三角形(一)》专题分项冲刺题,连结,则的长为( )A.B.C.4D.9.(江苏连云港)的三边长分别为2,3,4,另有一个与它相似的三角形,其最长边为12,则的周长是( )A.54B.36C.27D.2110.(四川凉山)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )A.9cmB.12cmC.15cmD.18cm11.(重庆)如图,与位似,点O是它们的位似中心,且位似比为1∶2,则与的周长之比是( )A.1∶2B.1∶4C.1∶3D.1∶912.(重庆)如图,与位似,点为位似中心,相似比为.若的周长为4,则的周长是( )
3中考数学真题专练《相似三角形(一)》专题分项冲刺题A.4B.6C.9D.1613.(浙江金华)如图是一张矩形纸片,点E为中点,点F在上,把该纸片沿折叠,点A,B的对应点分别为与相交于点G,的延长线过点C.若,则的值为( )A.B.C.D.14.(浙江湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是( )A.BD=10B.HG=2C.D.GF⊥BC15.(四川眉山)如图,四边形为正方形,将绕点逆时针旋转至,点,,在同一直线上,与交于点,延长与的延长线交于点,,.以下结论:①;②;③;④.其中正确结论的个数为( )
4中考数学真题专练《相似三角形(一)》专题分项冲刺题A.1个B.2个C.3个D.4个16.(湖南株洲)如图所示,在菱形中,对角线与相交于点,过点作交的延长线于点,下列结论不一定正确的是( )A.B.是直角三角形C.D.17.(浙江温州)如图,在中,,以其三边为边向外作正方形,连结,作于点M,于点J,于点K,交于点L.若正方形与正方形的面积之比为5,,则的长为( )A.B.C.D.18.(湖北十堰)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径
5中考数学真题专练《相似三角形(一)》专题分项冲刺题AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为( )A.B.C.D.二、填空题19.(陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E为边的黄金分割点,即.已知为2米,则线段的长为______米.20.(浙江湖州)如图,已知在△ABC中,D,E分别是AB,AC上的点,,.若DE=2,则BC的长是______.21.(湖南怀化)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=_____.22.(四川成都)如图,和是以点为位似中心的位似图形.若,则与
6中考数学真题专练《相似三角形(一)》专题分项冲刺题的周长比是_________.23.(湖南娄底)如图,已知等腰的顶角的大小为,点D为边上的动点(与、不重合),将绕点A沿顺时针方向旋转角度时点落在处,连接.给出下列结论:①;②;③当时,的面积取得最小值.其中正确的结论有________(填结论对应的序号).24.(湖南常德)如图,已知是内的一点,,,若的面积为2,,,则的面积是________.25.(天津)如图,已知菱形的边长为2,,E为的中点,F为的中点,与相交于点G,则的长等于___________.
7中考数学真题专练《相似三角形(一)》专题分项冲刺题26.(江苏宿迁)如图,在矩形中,=6,=8,点、分别是边、的中点,某一时刻,动点从点出发,沿方向以每秒2个单位长度的速度向点匀速运动;同时,动点从点出发,沿方向以每秒1个单位长度的速度向点匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接,过点作的垂线,垂足为.在这一运动过程中,点所经过的路径长是_____.27.(四川宜宾)如图,中,点E、F分别在边AB、AC上,.若,,,则______.28.(河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?______(填“是”或“否”);(2)AE=______.
8中考数学真题专练《相似三角形(一)》专题分项冲刺题29.(湖南邵阳)如图,在中,点在边上,点在边上,请添加一个条件_________,使.30.(新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心将绕点D顺时针旋转与恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若,则______.三、解答题31.(浙江杭州)如图,在ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BFED是平行四边形,.(1)若,求线段AD的长.(2)若的面积为1,求平行四边形BFED的面积.
9中考数学真题专练《相似三角形(一)》专题分项冲刺题32.(四川乐山)华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.2.如图,在正方形ABCD中,.求证:.证明:设CE与DF交于点O,∵四边形ABCD是正方形,∴,.∴.∵,∴.∴.∴.∴.∴.某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究(1)【问题探究】如图,在正方形ABCD中,点E、F、G、H分别在线段AB、BC、CD、DA上,且.试猜想的值,并证明你的猜想.(2)【知识迁移】如图,在矩形ABCD中,,,点E、F、G、H分别在线段AB、BC、CD、DA上,且.则______.(3)【拓展应用】如图,在四边形ABCD中,,,,点E、F分别在线段AB、AD上,且.求的值.
10中考数学真题专练《相似三角形(一)》专题分项冲刺题33.(浙江嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造DPE,使得DPE∽CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.34.(浙江湖州)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,.记△ABC的面积为S.(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为,正方形BGFC的面积为.①若,,求S的值;②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB
11中考数学真题专练《相似三角形(一)》专题分项冲刺题于点H.若FH⊥AB(如图2所示),求证:.(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为,等边三角形CBE的面积为.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索与S之间的等量关系,并说明理由.35.(江西)如图,四边形为菱形,点E在的延长线上,.(1)求证:;(2)当时,求的长.36.(江苏扬州)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;①点在线段的延长线上且;②点在线段上且.(2)若.①当时,求的长;②直接写出运动过程中线段长度的最小值.37.(浙江宁波)(1)如图1,在中,D,E,F分别为上的点,交于点G,求证:.(2)如图2,在(1)的条件下,连接.若,求的值.(3)如图3,在中,与交于点O,E为上一点,交于点G,交于点F.若
12中考数学真题专练《相似三角形(一)》专题分项冲刺题平分,求的长.38.(湖北武汉)问题提出:如图(1),中,,是的中点,延长至点,使,延长交于点,探究的值.(1)先将问题特殊化.如图(2),当时,直接写出的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在中,,是的中点,是边上一点,,延长至点,使,延长交于点.直接写出的值(用含的式子表示).39.(湖南岳阳)如图,和的顶点重合,,,,.(1)特例发现:如图1,当点,分别在,上时,可以得出结论:______,直线与直线的位置关系是______;(2)探究证明:如图2,将图1中的
13中考数学真题专练《相似三角形(一)》专题分项冲刺题绕点顺时针旋转,使点恰好落在线段上,连接,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的绕点顺时针旋转,连接、,它们的延长线交于点,当时,求的值.40.(山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.41.(江苏苏州)(1)如图1,在△ABC中,,CD平分,交AB于点D,//,交BC于点E.①若,,求BC的长;②试探究是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,和是△ABC的2个外角,,CD平分,交AB的延长线于点
14中考数学真题专练《相似三角形(一)》专题分项冲刺题D,//,交CB的延长线于点E.记△ACD的面积为,△CDE的面积为,△BDE的面积为.若,求的值.42.(湖北黄冈)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.(1)尝试证明:请参照小慧提供的思路,利用图2证明=;(2)应用拓展:如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.①若AC=1,AB=2,求DE的长;②若BC=m,∠AED=,求DE的长(用含m,的式子表示).43.(甘肃武威)已知正方形,为对角线上一点.
15中考数学真题专练《相似三角形(一)》专题分项冲刺题(1)【建立模型】如图1,连接,.求证:;(2)【模型应用】如图2,是延长线上一点,,交于点.①判断的形状并说明理由;②若为的中点,且,求的长.(3)【模型迁移】如图3,是延长线上一点,,交于点,.求证:.44.(江苏扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)
16中考数学真题专练《相似三角形(一)》专题分项冲刺题45.(四川成都)如图,在矩形中,,点是边上一动点(点不与,重合),连接,以为边在直线的右侧作矩形,使得矩形矩形,交直线于点.(1)【尝试初探】在点的运动过程中,与始终保持相似关系,请说明理由.(2)【深入探究】若,随着点位置的变化,点的位置随之发生变化,当是线段中点时,求的值.(3)【拓展延伸】连接,,当是以为腰的等腰三角形时,求的值(用含的代数式表示).