微积分题库

微积分题库

ID:83481545

大小:4.69 MB

页数:51页

时间:2023-06-28

上传者:灯火阑珊2019
微积分题库_第1页
微积分题库_第2页
微积分题库_第3页
微积分题库_第4页
微积分题库_第5页
微积分题库_第6页
微积分题库_第7页
微积分题库_第8页
微积分题库_第9页
微积分题库_第10页
资源描述:

《微积分题库》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

⚪1—21..ᑡᦪḄ12(1)y=---=(2)y=logarcsinx(3)y=-----t/J/2_9sin^xI1y_1(4)y=l-----Flog(2x-3)(5)y=arccos-1----+log(4-x2)rtflVx-222.-ᦪsin—(xw0)y=\x0(x=0)Ḅ01஺3.3ᑡᔜ⚪5,ᦪf(x)0g(x)7ᔲ9:?(1)/(%)=xg(x)=y[x^(2)f(x)=cosJT,g(x)=1-2sin2y92[বf(x)=-~-,^(x)=x-l(4)/(x)=±,g(x)=x°஺x+1X4.@/,(x)=sin1AB/(x+Ax)-/(x)=2sin—coslx+—I5.@/஺)=0?+஺D+5E/(X+I)—/(X)=8X+3,Fa,஺Ḅ1஺6.3ᑡᦪ5HI7ᏔᦪKHI7᜻ᦪKHI7MN᜻ᦪONᏔᦪKi_2x(1)y=x2(l-x2)(2)y=3x2-x3(3)y=----l+xa*'+Q-X(4)y=x(x-l)(x+l)(5)y=sinx-cosx+l(6)y---------7.@/(x)Sᙠ(-8,+8)VḄWXᦪYAB(1)F,(x)=/(x)+/(-%)ᏔᦪফF2(x)=/(x)-/(-x)S᜻ᦪ஺8.ABᙠ(fo,+8)VḄWXᦪ\⊤^S_`᜻ᦪa_`ᏔᦪḄ0஺9.@/(x)ᙠ(-L,L)VḄ᜻ᦪYc/(x)ᙠ(0,L)VᓫeYAB/(x)ᙠ(-L,0)Vfᓫe஺10.3ᑡᔜᦪ5HI7ᕜhᦪKijᕜhᦪYᢣlᐸᕜh(1)y=cos(x-2)(2)y=cos4x(3)y=l+sinn(4)y=xcosx(5)y=sin2x(6)y=sin3x+tanx஺11.ᑡᔜoᦪ5HIpq᪀ᡂtᔠᦪKvq᪀ᡂtᔠᦪḄᑏᡂtᔠᦪYxᢣlᐸ஺(1))»=x3,x=sin/(2)y=a",u=x2(3)y=log”=3x2+2(4)y=4u,u=sinx-2(5)y=4u,u=x3(6)y=log”=x2-2஺12.3ᑡᦪ7ᵫHI|ᓫᦪtᔠ}ᡂḄK(1).=1(1+.)2+1(2)>=3(x+l)(3)y=sin2(3x+l)(4)y=^logcos2x«a13.-3ᑡᦪḄᦪ

12X(1)y=2sinxফy=l+log.(x+2)(3)y=-2A+1⚪1—31.ᑭᵨᦪᑡ᩽▲AB᝞limu=A,ᑣlimIu\=\A\,xBpᯠ஺nn"TOO"T8⚪1_4Yl'X(X<1)1.@J(x)=1)(1)ᦪy=/(x)Ḅ(2)᪷-᩽▲lim/(x)alim/(x)XT1+(3)-1Y/(x)ᨵ᩽▲ᔩK2.-3ᑡᦪ᩽▲..XX(1)hm——(2)hm—z-----(3)lim—20XTO+1X1XTO+X+\X

2r,+lxl3.3ᑡ᩽▲7ᔲ¡ᙠKS¢£KJ_(1)limsinx(2)limarctanx(3)limcosX—>+00x->00XTOXlx-11c(4)lim(l+e-x)(5)lim.(6)lime~o▲TOOX->1x-1XT+00⚪1—5-3ᑡ᩽▲,rf11-V)x2+512.lim)—23.lim]223n(n+1)J.r—>2x-3'..x~—2x+15,limWVx-14.lim----z------6.lim2Ilx4-1A->0hXf1⚪1ߟ61.-3ᑡ᩽▲©sinax«ஹtanx-sinx©1-cosxZI(1)hm------SwO)(2)lim(3)lim--------iosinbxXTOioxsinx2x-tanx“ஹ..arcsinx(6)limJ1+—(4)lim---------(5)lim-------iosinx10XX->oClXx+3(iYry(7)hm(8)limI1+—(9)lim(l+tanx)cotxt).r->oolX10)ஹ%-+]¯+Q±X2+2](10)hm-----(11)lim(12)lim1x^ool7

32.ᑭᵨ᩽▲¡ᙠ´ᑣAB/«µ©111©(1)hmn\----+—------+…+-------=1XT0°

4+7T஻~+24n+n7C)(2)ᦪᑡ·,¸2+¹,J2+º»…Ḅ᩽▲¡ᙠ;¾V%2+11r(3)lim-------=1oXT+COX+1⚪1—71.஻À▲eÁ,3ᑡ᦮᪗ᦪHI7ÀƾKD(3)”(4)ᓰ*(1)-y(2)nn+1nn2.ÂÃᦪxsinx,-^-,—,ln(l+x),ev,e~xxx(1)xf0,VÉᔜᦪ5HI7ÀƾKHI7ÀÆᜧK(2)Xf+8YVÉᔜᦪ5HI7ÀƾKHI7ÀÆᜧK(3)7Àƾ”YËÌÍᑗᔩKX3.ᦪy=xcosxᙠ(-00,+00)77ᔲᨵÏKÐXf+8ᙢYË`ᦪ7ᔲSÀÆᜧKS¢£K4,-3ᑡ᩽▲!000«J/+஻«0>11+஺+஺-+…+஺..]171«(1)lim(2)limlim-----------------(lal<],161<1)x-»oo"2+1'x->00n-2KT00(_2)஻+2஻Ô3©4x2-1(4)lim(5)limµ_(6)hm---------XT00(_2Ó+3"iX>lX+16R—5x+1,25.-.ᑡ᩽▲:..7T.(1)limeA+(2)limx-cos-(3)hm-sinn/rXT+0o(,r->0Xrt->00flarctanxe-x(4)lim(5)lim-------(6)lime-^arctanxoA—>00xisarctanxxf+86.3ᑡᔜ⚪Ḅ×Í7ᔲØKS¢£K2_qlim(x2-9)(I)lim------=-------=ooXT9X-9lim(x-9)x79©Y11Xr1r1(2)lim(--------z—)=lim-------lim^-=00—00=01XTIX—\X-1XTIJC—1x-^\-COSX..©1«lim-----=limcosx-lim—=0஺X->00XX—8A—>00X7.ABÚ0Yarcsinx-x,arctanx-xo8.ᑭᵨÛÜÀƾḄឋÞY-᩽▲

5,ஹsin2x…..sin2x(I)hm----(2)hm-------iosin3xioarctanx©ஹ©sinxnX(3)lim-------(஻SØ᦮ᦪ)(4)lim—^=xf஺(sinx)mio+VI-cosx9.xf1Yx3-3x+27x-17ßà▤ÀƾK10.Xf+8Y4—7V7ßà▤ÀƾKx4+lX11.x-8YLsinµ7L7ßà▤ÀƾKXXX⚪1—81.Ẇã3ᑡᦪḄäåឋYxælᦪḄ:Yx2(04x41)(1)fM=-(2)/(x)=X2-x(l1)1(x=0)2.ᢣl3ᑡᦪḄçèéYBËIçèéêjH_ëK᝞7\ìçèéYᑣ⊡ᐙᡈᦋñᦪḄòóäå஺x2-1n(i)y=----------(2)y=—বy=cos2-.X2-3X+2tanxXe*(00—sosinx4sinx-sin஺aln(l+3x)(4)lim(5)lim--------(a>0)(6)lim----------x—>ax-axix-bxsinx(7)lim(8)limthx(9)lim(x3+2x-l)X+xX->-KOXf—00

6y[x-V2+Jx-2"10$lim------.-----"11$limx”&(4"12$lim-------------20x)⚪1(101.+,-.x$-3x=lᙠ23(1,2)567ᨵ(9᪷஺2.;/(x)ᙠ=23[a,?1:ABCX],4C…Cx”F[a,ᑗᑁḄ“9KC+,e[a,b],MNfg/(X,)+/(X)+-+/(%„)2/C)=--------------------------------n)⚪2—11.ᵨRᦪTUVWᑡYᦪḄRᦪ(1)y=ax+b(a,ᓃF[ᦪ)\(2)/(x)=cosx\(3)y=-ox2.Wᑡᔜ⚪aᎷTc'(Xo)eᙠCᢥ᯿RᦪTUhiWᑡ᩽▲CᢣmA⊤pqrs(1)/Uo-^)-/Uo)ফ=A0ᐸaC/(0)=0\lim=A\&T°Ax1°Xব]im{|}~—஺20h3.ᑭᵨᫀYᦪVRᦪCVᑡYᦪḄRᦪ(1)y=x2-y[x\(2)y=xL6\yfxx2-y[x(3)y=—r;(4)y=-=-oxVx54.Yᦪf(x)=L,V/পC/'(-2)஺X5.Yᦪf(x)=V7,V/(2),(4)஺6.ᵫs=gg/(g=9.8/2)஺(1)Vᙠf=5ᑮ(f+4)323ᑁḄᙳC;=1C-0.1C0.001;(2)Vᙠ5ᩈḄ\(3)VᙠfḄ஺7.Yᦪᙠ¡K¢ᨵRᦪCYᦪᡠ⊤pḄ¤¥ᙠ¦KF§F¨¢ᨵᑗ¥s©ª«,஺X2(X<1)8.;Yᦪ/3)=(I-'cMYᦪ/(/)ᙠx=lᜐAB¯RCa,஺°±qr²sax+b(x>1)29.V¤¥y=sinxᙠx=%³´=§»ᜐḄᑗ¥·᳛஺

710.V¤¥y=d5±ºᙶ᪗½=1³૙=3Ḅ¾KC¿ÀÁ¾KḄᒘ¥஺æÄᱥ¥5Æ(KḄᑗ¥ÇÈÁᩩᒘ¥s12.+,Yᦪᦪ/(Ê=-Ë⊈ᨬ஺°)ᙠ_=0ᜐABCЧ¯R஺¥0(x=0)13.Yᦪy=lsinxlᙠx=0ᜐḄRᦪFᔲeᙠCqrs14.ÒÓWᑡYᦪᙠᢣTKᜐḄABឋÕ¯Rឋ21/1ஹஹxsin—(xwO)”5ØÙ(1)/(x)=

8i()f(2)y=x2sin(x-2),Vy'(2)஺3.VWᑡYᦪḄRᦪ(ᐸax,fFÞßC஻CáFᜧÈãḄ[ᦪ):(3)y=>/l+in2x(5)y=Jl+e”\(6)y=Vcosx2(7)y=J1+2ᐗ4—.~\(8)y=sin2-cot(\(9)y=sin2(2x-1)\'VT7732(10)y=sinA/1+X2\(11)y=cotV1+(12)y=sinev+A~2\(13)y=cos2(cos2x)(14)y=x2Isin—\x(16)y=2"æ(17)y=t3—3'(18)y=ln(l+X+A/2X+X2)\(19)y=eC3\(20)y=ln3(x2)\(21)y=ln[ln(lnr)]\(22)y=arccos—\(23)y=arccosJl-3R\(24)y=Qarctanx\x

9R2arcsinx…ஹ(25)y=xarccosx-vl-x(26)y=.(27)y=arccos—'e(29)j=ln(arclan71+x2);(30)y=aicsinA(28)y=arcsinarccosx\(32)y=earcsin'+arctanex\(33)y=(5](é)\(31)y=cosarccos-sin2—(34)y=e"\(35)y=ch(shx)\(36)y=th(lnx)\(37)y=shxe"(38)y=arctan(thx)(39)y=In(chx)+———2ch2X4VÕ¤¥y=x?+5ëᑗìíÀK(I,2)Ḅî¥-.஺5V¤¥y=xlnxḄÇÈî¥2x-2y+3=0Ḅï¥-.஺6Äᱥ¥y=;?5Æ•KḄᑗ¥Õî¥3x-y+1=0ñᡂ45°ó஺7VÀ¤¥y=e2*+x25ºᙶ᪗x=0ḄKᜐḄï¥-.CõVöKᑮ¦ï¥Ḅ÷ø஺Vú:8;/(x)ùx¯R,dxপy=/U2)\y=/(ex)e/w\বy=/[/(x)](4)y=f(sin2x)+f(cos2x)«)⚪2—31.VWᑡYᦪḄ~▤Rᦪy=^a2-x2\(3)21+4+4(1)y=xcosx\(2)y=-------------\X(4)y=tanx\(5)y=(1+x2)arctanx\(6)y=e஺\y=ln(x+yjx2-a2)஺(7)y=Insinx(8)y=sinx-sin2x-sin3x\(9)2.ý+Yᦪþ=GeA+C2e-஻(ZGC2ᦪ)ᐵy"-=0஺3.ᦪy=evsinxᐵy"-2yr+2y=0஺4.'(ᑡᦪḄ+▤-ᦪ.(1)y=x2e2x,'.(2)y=x2sin2x,')*)஺d2v5.4/஻(x)6ᙠ'(ᑡᦪyḄ8▤-ᦪ9:.dx<1)y=/(x2)(2)y=/(sin2x).(3)y=ln[/(x)]«6.ABC=8-DE=FF8஺dyVdy2(y¥

10I⚪2—41.'(ᑡLMᡠOPḄ◚ᦪyḄ-ᦪ?.(1)X2+y2=/?2T(2)x2+xy+y2=a2(3)xy=e*"Ty(4)x>'=y'(5)xcosy=sin(x+y)T(6)arctan—=In24ᓝ.yV2஺x2.ᑭᵨ_ᦪ'-`'(ᑡᦪḄ-ᦪ:(1)y=2x«(2)y=(lnx)xT(3)y=x3x-2+1)(4)y=(sinx)cost(5)y=(6)y=(5-2x)(x-l)-1)3.'ᙊ஺-1)2+(y+3)2=17ef(2,1)ḄᑗhLM஺4.iy=$ᢣ(ᑍ+m)'y"஺5.is=l+fe,'s.ox=t26.opq'y=4/dxdx237x=acostdyAy7.oprsh,a''y=asintdxdxx=a((p-sincp)dyd2y8.op᤮h'yy=a(l—COS0)dxdx9.'(ᑡyhᙠzPfᜐḄᑗh|`hLM:3atx=----7x=acos0,}7il+t~0ᙠf=2ᜐ஺(1),ᙠe=Fᜐ;y=hsin043m2x=l+2r-r210.opfLMqj=4r(1)'fDᡠᙠḄT(2)t=2ḄLᔣḄT(3)'LᔣLᔣ஺x=elsin/11.LMqy=ecostᡠOPḄᦪyᐵi2=2dydx12.Fᓣᙢ☢Fὅ120¢£¤40¢/Ḅᚖ9¦'§¦¨15¦¦ὅḄ©

1113.ª«ᐭ8¢ஹᓃ⚔±8¢Ḅ²ᙊ┵s´ᘤ¶ᐸ᳛¹ᑖ»4¼L¢½5¢,ᐸ⊤☢9ᓣḄ¿À©14.ᨵFÂ5¢ḄÃÄ☠ᙠᜋᓃ4£Ḅ(ÇÈᙢɤ3¢/ḄᜋÊËÌ.(1)½ᐸ(ÇᜋÊ¿À¢ÃÄḄ9ஹ.ÇËḄ᳛ÍΩ(2)£Ḅ(ÇᜋÊ1.4¢ÃÄ9Ç(ËḄ᳛¿À©(3)Ï£Ḅ9Ç.ËḄ᳛4¢/©I⚪2—51.'(ᑡᦪḄÐᑖ(1)y=5x2+3x+1T(2)y=(x2+2x)(x-4)T(3)y=arcsin(2x2-1)T(4)y=2ln2x+x6(5)y=ln(secz+tan/)T2.'(ᑡᦪᙠᢣPfḄÐᑖ.2(1)y=arcsin4x,ᙠÒ=—|Ó=2—(1=1qÔ)Tx(2)y=-----,ᙠx=0|x=lᜐ஺1+x3.'(ᑡᦪᙠᢣPᩩÖ(ḄÐᑖ.2½XB”ᑮÙ஺(1)y=x-x,x=10,zlx=0.1T(2)}"(tanx+l)24.4ᦪy=1+1,(1)ᙠÛ=1ᜐdr=0.01,AÜÝdy,4yÞ-dyT(2)ªfxᜐḄÐᑖdy,ß|—ᙠᦪàs9᪗D஺5.âã.(1)d()=2xdxT(2)d()=—dx(3)d()=—dxTxx1dx(4)d()=e-vdxT(5)d()=sin2xdxT(6)d()=--=2y/x(7)d()=eAdx2=()dx.(8)d(sinx+cosx)=d()+d(cosx)=()dxoI⚪3—11.EF(x)=lnsinxᙠæὃ9RollePᳮḄᩩÖêᙠ,9ëDì/য=0Ḅ2.¤Pîᙠæ1,3ï9Ḅᦪ/஺)=஺-1)஺-2)(ð-3)ñòóRollePᳮ²OḄ஺3.opᦪ=ôᙠ1,1ïõᨵ-ᦪöḄf÷RollePᳮᔲùú©ûü©4.ᦪ/(x)=arctanxᙠæ0,1ï9Lagrange¶ÿᳮḄᩩᙠ(0,1)ᑁf(b)-f(a)=/'OS-a)ᡂḄJ஺

125.ab<0"#$%ᦪ/(%)=@ᙠ(a,b)()ᔲᑮ,-ᨵ▲0123ḄJ5678Lagrangex>?ᳮ@ᔲAB66.DᵨF%ᦪ/(G)=(G-1)(G-2)஺-3)(%-4)ḄLᦪ,MNOPQ(%)=0ᨵRST᪷?ᢣXYᡠᙠḄ஺7.\Nឤ^3_arcsinx+arccosx=—(-1V%21"er>exo⚪3—21.Fᑡᔜ⚪Ḅ᩽▲:ln(l+x)y[x-y[aInsin3}(1)lim(2)lim'"(a>0)(3)lim--------XTOx-2"y/X-y/aXT0+Insinx,nl+;(4)(6)limXT+8arccotx(7)(9)limxsinAXT0+(10)(12)limx-»02.\lim"-Sin'ᙠ,D)ᵨ^Hospitalᑣ஺XT+8X+COSX⚪3—31.¢£Ḅ¤⚗3¦4m5/3+£2m3/+4⊤¨(£m4)Ḅ¤⚗3஺2.©ᵨMaclaurin23¢%ᦪ/(x)=(1-3x+⊤¬¨xḄ¤⚗3஺3.40=4"F%ᦪy=J7Ḅ®▤Taylor23஺4./=-1"F%ᦪ/(x)=£Ḅ஻▤Taylor23ᑏ°±ᨽ³´µ⚗஺X⚪3—41.ᑨ%ᦪ/(x)=x+cosx(04]<2¸)Ḅᓫºឋ஺

132.\N_>=£3+¦ᓫº0¼1஺3.ᑨ%ᦪ/½x¾=arctanx-xḄᓫºឋ஺2-lx4.\N_¾=----ᙠD¿5£=0ḄÀÁÂ@ᓫº0¼Ḅ஺x5.Fᑡ%ᦪḄᓫº_½1¾y=2^3-6x2-18x-7(2)y=(x-2)5(2x+l)4(4)y=-a)(a-x)2(a>0)½3¾-V-4--9x2+6R½5¾y=2Ã-Inx_(6)y=ln(x+Jl+x?)஺6.\NᑡD^3_(1)1+—x>>J\+x(x>0)(2)1+xln(x+Jl+—)>vl+x2(x>0)2(71বsinx+tanx>2x0x(x<0)oI27.Å\OPsinx=¦Æᨵ,ST᪷஺8.ÅËOP;6m3£2—9£+2=0ḄT᪷Sᦪ,ᢣ7È᪷ᡠᙠÊ஺9.ᓫº%ᦪḄL%ᦪ@ᔲr¨ᓫº%ᦪ6½ẆÎ_f(x)=x4-sinx)⚪3—51.Fᑡ%ᦪḄ᩽?:(1)y=2--3x2_1+3x(3)y=x-ln(l4-x2)_(4)y=xx6(5)y=2ex+e~x.(6)y=x+tanxo2.Fᑡ%ᦪᙠᢣ(Ḅᨬᜧ?Ñᨬs?:(1)y=x5-5x4+5x3+1,[-1,2]l-x+x(2)y[0,1]\+x-x72a~bt(3)y=----1-----,½o,i¾,½஻>b>o¾x1—x(4)y=x+Jl-x,[-5,1]nn(5)ysin2x-xf1-x(6)y=arctan[0,ij1+J(7)/(X)=1X?-3x+2l,[-10,10]o3.¢8ᑖ¨ÔÕᑖÖ᪵ᑖØXYḄOÙѨᨬs64.Ú•ᳫḄÝÞ¨R,ᑁà$áᳫḄᙊãäḄᨬå¨æçè3.5.4

14஻¨¤ᜧ"ᙊãḄäéᨬᜧ65.êë☢(míî5?½1,4¾ïmᩩðñ⌕Xᙠwᙶ᪗õ(Ḅö÷¨nyXYÙѨᨬsFáðñḄOP஺6.#øS1£ùú஻ûü1ᑮ஻Sü1?X],ᑍ2,…£”Å\_Xÿ஻ᦪḄᙳ2+'2++%.,ᡠḄḄx-X|/+x-X2/+…+X-X“"2#ᨬ%஺n7.ᨵ)ᩨᩚ,-.ᙠ0Ḅ)1,ᙠ2-.0.1mᜐᢞ)89#49kgḄᱥ?,@ABᩨᩚḄC)1,DᩨᩚEᢝGH353",᝞LᩨᩚMNOPḄ89#5kg,QᨬḕAḄᩚST8.V•ᙽYZ#RḄᙊ]ᱏ᢬`aᡧcdᡂ•afᧅH3.5.4"஺hᶇjḄᡧcḄklm3#nᜧ,dᡂḄfᧅḄpqᨬᜧTr⚪3ߟ61.QjᑡᔜxᦪḄyz{|}~.:x3(J)y=x3-5x2+3x-5(2)y=-------(஺#ᦪ);,+3(3)y=x56(4)y=(x+l)4+e1(5)y=earclanx;(6)y=ln(x2+1)(7)y=x4(121nx-7)(8)y=xe~xo2.h4A#,.1,3)#=஺ᑍ3+Ḅ~.T%=3.Q,2Ḅ~.஺y=3t+r4.y=k12)3/kḄAḄ,DḄ~.ᜐḄ.஺r⚪3—7QjᑡḄ¡¢:1x-4x+5x2.y=--------------(I+x)(l-x)2x43.X24.5.y=2x+arctan)஺-2

15r⚪3—8¥¦jᑡxᦪḄHc1.y=(x4—6x2+8x+7)»2.y——F4x~ox3.y=e~(x~l)2o4.y=ln(x2+1)o9a3,%5.y=-----7(஺>0)஺x6.y=e~xsin.r(x>0)or⚪3—91.Q¬ᱥ)-44+3ᙠ⚔.ᜐḄ᳛}᳛YZ஺2.¯°=d11.(0,1)ᜐḄ᳛஺3x=acost43.Q²ᙠ/="ᜐḄ᳛஺y=67sin3ffx=6t(cos/+/sinr)]4.Q¶ᙠ,=—ᜐḄ᳛஺[y=a(sint-tcost)2y2X5.·¸y=஻ch—ᙠ•.ᜐḄ᳛YZ#஺aar⚪3—101.·¸º»5+5x+l=0ᙠ{|(-1,0)ᑁᨵ½)Ḅ¾᪷,ÀᵨᑗQa᪷Ḅ¢Ã,DÄÅ0.01o2.Qºxlgx=lḄ¢Ã᪷,DÄÅ0.01஺r⚪4—11.qᑖJஹfCr)d/ḄÉÊËᔲÍÎ#ÏBy=/*),xÑÒx==bÔ|ḄÕÖcḄ☢qT2.Øᱥ?ÙxÑ,ᙠÚAÛ=Û(᜜ḄÝᵨ,ᵫ.Qàᑮ.஻(஻<»),ᵨqᑖᭆä(qᑖ»Ḅ᩽▲)ᩭ⊤éÚAᔆᡠÝḄëW3.ᑭᵨqᑖḄÉÊ,î¸ï.ᑡð»(1)[2xdx=1(2)[V1-x2dx=—JoJo4

16(3)fsmxdx=O(4)f2^cosxdx=2(2cosxdx<.J-%J.£JO24.õjᑡqᑖᑏᡂqᑖ»Ḅ᩽▲r>1(1)-dx(2)sinxdxojo1+Jo5.᪷øqᑖḄឋú,î¸jᑡqᑖû)aḄüᜧT(1)ýx)dxÒfx3dx(2)fx^dxÒýx2dx6JoJoJiJI11nxdxÒJ(lnx)2dx(4)(3)0þÒA6.Qᵫ(Ve-/2d/+fcos(r2)dr=0Ḅ◚ᦪ)xḄᦪ஺JoJodx7.ᑡᔜᦪ/ஹdcxsinz.(1)———drdxJit8.ᑡᔜ!ᑖ:(1)1dx(2)JVx(l+Vx)d.rdx/ஹf,dx(3)ভr——T4Vi-x2J«/V3l+x2n(6)f7tan26»d6»(5)=dxJof2x(E):;f(x)dxo(7)(8)4/*)=<2U>1)Jo9.:ᑡ᩽▲f2x(arctanr)dt1r஺(1)lim-cos(/)d/:(2)limߟ—j----------XTOxJs'isrmx…&+1X2(0

17dx(1)(3)dx6(4)(5)(x—2)~dx,ஹf2x,,ஹJCOS2x,fcos2x(19)cos2—dx(20)------------dx(21)-------------dtxJ2Jcosx-sinxJcosx-sinx2.62஺6%!1pq6*2prᔲtr62*Ḅuᦪv23.wxyzP{|a}ḄᑗzḄ᳛hᑗ}ᙶ᪗Ḅ:PᩩḄᡠᨵyzT:}(0,1)Ḅyz஺4.aᱥᵫ☟fqḄr3/(/):(1)ᙠ3ᱥ¡¢}Ḅ£¡r¤¥v(2)ᱥ¦§360◤⌕¤¥ª«v^⚪4—31.ᑡb!ᑖ:J(1-2x)5dx.,dx(1)(2)বJ3-2x'JinJJe*(4)-2,xdx(5)J/dfযdxJ®J(T)(8)fdx¯jtan10xsec2xdxJxlnxln

18xfdxfdxJxcos(x2)dx(10)(11)1:1Jsinx-cosxJe”+eT2Jx2V1+/dx(13)——dx-(14)(15)f------dx-J4+1J-Jcos4x-sin3xdxrcosx-sinx,(16)Jg(17)(18)2dxJ1+COSX

19C2'Tf/rx(IO)dx(20),dx(21)-.....dx²9+ᔆ+2?+5(22)fdx.ফ)-(24)dxJ4-X2,(x+l)(x-2)cos2xdx(26)|cos2(wr+e)dr(27)Jian3x-secxdx(25).102arccosx(28)[-.dx(29)[cos3x-cos5xdxdx(30)JVTvJ(arcsinx)2V1-x2j"8ᔉ»(33)Jdx(31)&2+1)3'vci—xxyx—1ஹrvx2-9./…rdx,…rd.X(34)1dx(35)1,—(36)½----0J%Jl+V2xJRJI2-X2.ᑡ!ᑖপJ(2)f°,d-Vব½À-21+sin2xJ-2x2+2x+251+6—dx”/2.pl(4)f4----——(5)cos-wdw(6)xJl-xdx)1+sin2x)/6JoJl7·]j8-2y2dy(8)['x2\la2-x2dx(9)J,_---—dx-V2J஺Jl/V2X2JÃdx…ஹJ3dx…ஹJஹ᝞xdx(10)J,X2V1X2'J஺V7(i+x)'Jo43a2-x2'+Pre2dx,ஹJÆcosxcos2xdx(13)/ezd/(14)1-----------:(15)Jo.JiV1+Inx2n________________j"\vcosx-cos3xdx(17)[Jl+cos2xdx(18)f1dx(16)JoJc)e+l°23.ᑭᵨᦪḄ᜻Ꮤឋᑡ!ᑖᐔJ“AJ4cos060\(1)xsinxdx(2)Jr~2বAJ5%3sin2x,Ì"dx(4)-;---dÐ஺~2Vl-X2J-5X4+2/+I4.4/,(X)hXYᦪÍÎ:p-v(x2)dx=ljw)dxm>0)஺5.4/(x)ᙠ;-4ᑗPXYÍÎ:aaf(x)dx=/(-x)dXoJ-bJ-b6.Ñ{|iᦪa,ÍÎ:

20f(x)dx=/(a-x)dx«JoJo7.ÍÎJ£=J£U>0).1+x2Ji1+x28.ÍΔ(l-x)"dx=f

21(l-x)mdxoJoJoᐔ9.ÍÎfsinnxdz=2f^sin/,xdxoJoJora+l10.4/(x)rÓ2/hᕜÕḄXYᦪÍÎ/(x)dxḄÖ×aØᐵ஺Ja-I11.Ú/(x)rXYᦪÛh᜻ᦪÍÎrᏔᦪÚ/(X)XYᦪÛhᏔᦪÍÎr᜻ᦪ஺Jo^⚪4—41.ᑡb!ᑖ:পJpe-2,d?(3)jarcsinrdrxcosmxdx(2)(4)JমJx2Jx2arctanxdxxln(x-l)dxInxdx(6)·Ixtan2xdx(8)jx2cosxdx(9)j(lnx)2dx(10)(11)f(A,2-l)sin2xdx(12)fxsinx-cosxdxJ(l-x)2JJ[Þdxf-2x-XJ(15)fedAsinnxdx(13)2(14)esin—dxJxJ2Jjxcos2xdx(18)j(arcsinx)2dr(16)Iedx(17)(20)jx!Vx2+a2dx(21)jarctanVxdx஺(19)Jy/x+l2.ᑡ!ᑖ“ß(1)(xinxdx:(2)[J——--dx(3)[(xsinx)2dsin2xJ஺______nr1ln(l+x),922x(4)———^dx(5)arctanvx-1dx(6)j^ecosxdxJo(2-x)2(7)£sin(lnx)dx(8)e"dx(9)Je1Inx1dxo(

22^⚪4—51.:ᑡb!ᑖ:f2x+3,I"/ᓝr—8²(1)I,djc(2)3dx(3)—dxJx2+3x-10Jx-XJ1+1fâ(5)Irf+i“.fã(6)(4)J(x+i)a+2)a+3)'l(x+1)2—1)Jx(x2+1)fdxfdxf1dx.(7)J(x2+l)(x2+x)-(8)Ji+1(9)Jx4-1fdxdxfdx(10)(12)J1+tanxJ1+sinx+cosx²1+är+1f(4å+ldx-(14)=-^ߟ^dx(13)Ebk.JJx+1c+1+1wJj¥+Uv(বJ(16)(17),-----------dxo1x~+2x+2XஹᵨçḄè:=ᑡb!ᑖW^dx-f(6+x6)3dXfl+COSXi(1)(2)(3)-----:—dxJ(I),Jx+sinxfinInx,fãf1dx.(4)(5)(6)JXJ/ê,JVxsinVxdx|ln(l4-x2)dxJrx.co3sxd,x(7)(8)(9)Jsin'xrVl+cosx,fA-3x'1,(ফJ(10)---------dx(11)8211*f,dxJsinxJ(l+x8)2'+3x44+2JX471ë45xcosry[x(13)(14)J-dx(15)----=----=dxJsmxJx(y/x+vx|es,nsin2xdx6j[ln(x+Vl+x2)]2,,ஹJInx,(16)(17)"dx(18)-------dJ(l+/)3/22|71-x2arcsinxdxJìarccosx,fl+tanx,(19)(20),--dx(21)-------dx²Vl-x2Jsin2xf——r-——r2-sinx,(24)íinxcosx,(22)(23)--------dx----------dxosin4xcos4xJ2+cosxJsinx+cosx^⚪5—21.:ᵫᑡᔜyzᡠîïðḄ☢!(1)y=lnx,y=e+l-xòózy=0(2)y=e",y=e"òózx=1(3)y=Inx,yô×ózy=In஻y=In/?(0

23(1)r=2஻cos஺(2)x=acos3/,y=tzsin3Z(3)r=2஻(2+cos஺)஺3.:ᑡᔜyzᡠîïðḄöᐳøᑖḄ☢!(1)r=lòr=l+sin஺(2)r=᫅sin9JK=cos28஺^⚪5—31.4஺yzy=l+sinx×ùúózx=0,x=/r,y=0îᡂḄyüýð:஺þxôÿᕜᡠᡂḄ஺2.y=X?y=XᡂḄRᡠᡂḄ஺1x3.ᨵᵫᱥ")=9«'(,*=a+1-"y=]()ᡂḄy0ᡂḄ஺123ᐸ56(78ᓫ:;101=87.8Xl()3kg/m3)஺4.FᑡH"ᡂḄIJKLMḄNO(1)y=/,P=>2,*'(2)x2+(y-5)2=16,ᐭ஺5.VᨵW┵YZ஻\ஹF^Z_ᙊ_ᙊḄ7ᑖbZ2஻28c2A,23,W┵Ḅ஺6.e2^☢;ghZRḄᙊ0ᚖ-j^0\ᩩlK-hḄᡠᨵW☢m;nopqḄ(5.3.5)஺5.3.5r⚪5—41.e2H")=lnx\wxj64x48ḄyzḄ78஺2.e2H"y=,(3-x)\wxjl{x43ḄyzḄ78஺3.H"y=J-}cosxdxḄz7஺~24.e2"x=acos^y=asiZrḄᐰ7஺5.e2"x=”(cosr+rsinr),y="(sint-tcost)\wxj10ᑮ஻Ḅ•yzḄ78஺6.ᦪ"r=e"6=0ᑮ஺=eḄyz7஺347.H"஺=ᑮ᜛=Ḅyz7஺438."7*=஻(1+85஺)Ḅᐰ7஺19.e2H"x=arctant,y=-ki(l+9/)f=0ᑮf=1Ḅz7஺r⚪5—61.-hZ20ᔖYZ80ᔖḄᙊᑁᐙ¡¢ZlONewton/ᔖ2Ḅ¦§V¨8©ᢝ«¬,⌕®¦§¯°g±◤⌕³´µ¶(2.•ᱥᢥ¸¹x=cP»-"¼½¾5Ḅ¿ÀÁ8ḄÂÃᡂÄÅe2ᱥᙠᵫx=0ÇÈ

24x=aÉÊ˾5¿Àᡠ³Ḅ¶஺3.ÌÍÎ\ḄÍÏ;ÐÑᔣḄ_ᙊÓÔ᝞565ᡠÖ×ÍÏØÍÉe2ÍÏḄÐÙ☢ᡠÚḄ¡À஺4.ᨵnῪÜÝÞßḄàᩩ^oᔜ710c6YZ20â7Ḅ^oÍ☢wãe2ÝÞḄ•äᡠÚḄÍ¡À஺5.YZ5ḄᙊåÍ᫜ᐸ^ghZ3᫜ᑁØçÍèé᫜ᑁḄÍᐰêᔾᦈ◤⌕³´µ¶(6.^Z8ᔖYZ6ᔖḄnῪpqᱏî-ᙢðñᙠÍò⚔ᙠ\^ᙠFôÍ☢Âõ,0⚔öÍ☢3ᔖ1ß÷☢ᡠÚḄ¡À஺7.o7Zacb(a>b)Ḅùↈûü☢ᡂaqýðjüᑁ7oÂõjü☢0:jþhᜐ,ↈ☢ᡠḄ(Ꮇpg)஺8.ᨵ/,!"0Ḅᙳᒴ&'(ᙠ*'Ḅ•,ᚖ./0aᓫ3ᜐᨵ456mḄ57M,&'857MḄᔾ:஺9.ᨵ4<=R,>?@*ḄᙊCD&'(ᐸ!"Fᦪ0,ᙠᙊ?ᜐᨵ456mḄ57M,J&'857MḄ:F஺K5.6.5M⚪5—71.4ᱥTv=3J+2/([/\)].!^_(`abᙠ(=0ch=3\JefgᑁḄiᙳ஺2.jᦪy=ᙠlgm_o©qḄiᙳr஺M⚪6—1ᑨuv.ᑡxyzᑖḄ|ᦣឋ,᝞ᦈ|(ᑣ`xyzᑖḄr஺f+0°dx+8dx1.J.2.7M⚪6—2ᑨᑡxyzᑖḄ|ᦣឋ,᝞ᦈ|(ᑣ`xyzᑖḄrC(xdxcNdxJ2/+.2Jlx+8r+0°dx3.e'axdx(a>0)64Jo(1-x)2-Jo

25⚪7—11.ᙠg.@ᙶ᪗>(aᑡᔜ7:(0,0,-4),(0,3,4),(V2,1,2)஺2.7c)ᐵ(1)ᔜᙶ᪗☢((2)ᔜᙶ᪗((3)ᙶ᪗7Ḅ87Ḅᙶ᪗஺3.7᜜(Xo(yo(Zo)ᑖ]ᔜᙶ᪗☢¡ᔜᙶ᪗Ḅᚖ!(ᑏaᔜᚖ£Ḅᙶ᪗஺4.-¤஺Ḅ¥¦§¨ᙠxOy☢q(ᐸª☢Ḅ>?ᙠᙶ᪗7(ª☢Ḅ⚔7ᙠx¡yq,bᔜ⚔7Ḅᙶ᪗஺5.7¬(4,-3,5)ᑮᔜᙶ᪗Ḅ/0஺6.ᙠyOz☢q(*¯°±²7A(3,l,2),8(4,-2,-2)¡C(0,5,1)µ/0Ḅ7஺7.¶·¸T¯74(4,1,9),5(10,-1,6),C(2,4,3)⚔7Ḅ¯@D¹µῪ¯@D஺M⚪7—21.ᔣ6஺*¼¡yḄᜳ@¾µ(¿*zÀḄᜳ@¹ÁὅḄÃÄ(ᔣ6஺Ḅ¦ᔣÅÆ஺2.ᔣ6Ḅ¦ᔣÅÆᑖÇ£ᑡᩩÉ(ÊJËᔣ6*ᙶ᪗ஹᙶ᪗☢Ḅᐵ᝞ÍÎ(1)cos«=0¸(2)cos{3-\x(3)cosa-cosJ3=03.ᑖaᔣ6a=(1,1,1),=(2,-3,5)Ñc=(-2,-1,2)ḄÒ(Óᑏaᓫ3ᔣ6a°,b°,cQ஺4.ᔣ6i=(1,0,0),/=(0,1,0),A=(0,0,1),¶·ÃÃÖ×஺M⚪7—31.a,bØÙᔣ6(ÊbÚᑖÇ£ÛÜᩩÉf(ᑡµÝᡂ¥Îab(1)Ia+b1=1a—bI(2)—=—஺laiMl2.஻=Q—8+2c/=a+35-c,ᵨ஺(4c⊤ä2஻-3P஺3.ᙠ448஺>(M,N,¬ᑖBC,C448Ḅ>7(ᵨa=3C,5=C4,c=A5⊤äᔣ6¿(ç(¿஺4.è=é(¶·¸8êë47஺(ᨵ=(ì+5í)஺5.±²Ã7M](0,l,2)¡“2஺(41(0)(ᵨᙶ᪗⊤äÝ⊤äᔣ6ÁðÑ42ñò஺6.ᔣ6஺=᝞-4(+74Ḅó7BḄᙶ᪗(2,-1,7),bḄô7AḄᙶ᪗(õ஺ḄÒÑᐸ¦ᔣÅÆ஺7.±²¯ö÷(1,2,3),¬2=(-2,3,-4),¬3=((-4,5)Àf]ᵨ•7(ᔠ¬Ḅᜧú¡¦ᔣÅÆ஺

268.iûᔣ6஺=(6,7,-6)Ḅᓫ3ᔣ6஺M⚪7—41.ᑨv.ᑡüý¹ᔲᡂ¥(ÛÜÎ(1)Pab=0,ᑣ஺=Oᡈ5=O(2)(ab)c=a(bc)(3)(ab)2=\al2lftl2«2.a=3i-j-2A,=i+2/-A,(A)abJaxb6(2)aḄᜳḄ஺23.ᔣ஺Ḅᜳ஺=§lal=3,I1=4,(3஺-2b)•(஺+»)஺4.a,4cᓫᔣ!"#஺+5+c=0,Q+bc+c஺5.ᔣa,A,c"#ᩩ%a+5+c=O,&'axb=bxc=cxa஺6.(஺=3+6/+84)*+,ᚖ.Ḅᓫᔣ/᪵Ḅᔣᐳᨵ3457.6100ᓟ8Ḅᱥ:;<=(3,1,8)>.?@AᑮC2(14,2),DᡠFḄG(HIᓫJDḄᔣz+Kᔣ)஺8.I஺1=3,11=26,lax51=72,஺•஺9.I஺1=3,181=5,M4NOPa+(a-RSTᚖ.510.ᔣ஺=2i-3/+=i-j+3Ac=i-3j,(1)(a-b)c-(a-c)b(2)(a+U)xS+c)(3)(axb).c஺11.=i+3j,3=j+3Jt,40A8Ḅ☢W஺X⚪8—11.ZA<([\<(2,3,1)(4,5,6)]^_/A<Ḅ`ab஺2.A<ᑮ

276.Zc☢}z+!(2x+y-J?z=OḄᜳ*Ḅb஺37.•c☢}<(1,0,-I)!cldᔣa=(2,1,1)஺=(1,-1,0),c☢b஺8.ᑖᢥtᑡᩩ%c☢b(1)cldxOz!}<(2,-5,3)(2)}z+<(-3,1,-2)(3)cldX+!}[<(4,0,-2)(5.1,7)஺X⚪8—31.<(1,2,1)ᑮc☢x+2y+2z-10=0Ḅ^_஺x—37—12.}<(4,-1,3)!cld.?——=y=--Ḅ.?b஺2,53.¡\tᑡᔜ¢£Ḅ.?c☢¤Ḅxᐵ¦(1)'+=2LL-=4%Z2y—2z=3(2)'-=3ªZ2y+7z=8-2-733-27(3)^^=ᓃᓃ=^x+y+z=3஺31-44.}[

28X=1X+]ᓃ2=,cl!}<Ḅc☢b஺12.(.?y=-l+l)——.Ë121z=2+/13.<ÈT,2,0ᙠc☢x+2y-z+l=0ÌḄᢗÎ஺14.<ÏÈ3,-1,2ÉÐIÑ.?r+^_஺[2x-y+z-4=0[2/—4y+z=015..?1Ñᙠc☢4x—y+z=lÌḄᢗÎ.?Ḅb஺[2x_y_2z_9=0X⚪9—1I.ᢣsÒ.ᑡbᙠc☢Ó᪆3N£ᙠÕ¤Ó᪆3N£ᑖ⊤ghiÖ×5(1)x=2(2)y=x+l(3)x2+y2=4(4)x2-y2=\62.ᢣstᑡbᙠc☢Ó᪆3N£(ᙠÕ¤Ó᪆3N£ᑖ⊤ghiÖ×5’22y=5x+1—/*τ—y=11(1)49y=2x-3=33.ÙxOzᙶ᪗☢ÌḄÚᱥ?d=5xÛᑍ+ÝÞ-ᕜᡠàᡂḄÝÞj☢Ḅb஺4.ÙxOzᙶ᪗☢ÌḄᙊ*2+—=9Ûz+ÝÞZᕜᡠàᡂḄÝÞj☢Ḅb஺5.ÙxOyᙶ᪗☢ÌḄãj?4/—9y2=36ᑖÛx+)y+ÝÞZᕜᡠàᡂḄÝÞj☢Ḅb஺X⚪9—21.zstᑡbᡠ⊤gḄj☢:(4)y2-z=02.ä'tᑡÝÞj☢på᪵×ᡂḄ529?2(1)—++—=1;(2)X2--+z2=14994(3)x2-y2-z2=.1(4)(z-a)2=x2+y23.zstᑡb⊤gḄj☢:

292222(i)À+ᓃ+/=1(2)z=À+j94349(3)16x2+4y2-2=64ozX⚪9—31.zstᑡj?ᙠèZᓶ▲ᑁḄÖ×(1)Ï(2)Ò43Z1[y=2[x-y=0222x+y=<1(3)^.x2+z2=a22.ᑖì?cldx+)y+!}j?2x2+y2+z2=16X2+z2-y2=0Ḅí☢b஺3.ᙠyOzc☢ᑁîᙶ᪗<ᙊ=ḄᓫᙊḄb(ïᑏsñnò×·Ḅb)஺4.Ùt☢j?ḄZóbᓄ¸ᦪbjx2+y2+Z2=0J(x-l)2+j2+(z+l)=4y=x[z=05.õÝ?x=acos6«y=asin0z=b0ᙠ4ᙶ᪗☢ÌḄᢗÎj?Ḅ.ᙶ᪗b஺6.j?÷2+y2+3yz-2x+3z-3=0y—z+1=0ᙠzOx☢ÌḄᢗÎj?Ḅb஺7.ᢣstᑡbᡠ⊤gḄj?পÒ2+/+z2+25x2+4y2+9^2=30(2)[x=3z=\Jx2-4y2+z2=25y2+z2-4x+8=0(3)½(4)x=-3y=422u(5)94x—2=0

30X⚪10—11.úᦪ/(û/)=12+y2Zrtan2,/(þḄ)஺y2.úᦪ/(஻,ᓃw)=஻"+w"+"/(x+y,ᑍ)஺3.ᑡᔜᦪḄ/ஹ111(1)u=—=+—=+—=y/xy]y&(2)“="2_%22_z2+-----(/?>r>0)."/2222S+yZ+z-r2□,2YV4.ᦪ-----ᙠ/0123Ḅ4y2-2x5⚪10—21.8ᦪZ=R2-y+y,X91:ᦪᙠ;஺0<:=:ᜐḄ?@ABC,A:,zEᐰ@AAxG92:HxI2Jᑮ2.1,yI2Jᑮ1.9M=1y=i8/(x,y)=x+y-&+y2,(2,4)஺3.fx8z=ln(x+0],\|஺4.I2x)ঝ`>•=05.8/(x,y)=eTsin(x+2y),f0,(g/10,56.8W=ln(l+X+)2+[3),Hx=y=z=lM<஻x+஻y+஻z஺7.m.ᑡᦪḄ?nᦪ91:z=Intan—G(2)z=arcsin(yVx)G(3)z=sin—scos—Gyyx(5)z=xyeSin;ayG(6)z=ln(x+Iny)G(7)z=>l_xsin—G(8)஻=2e'*+e-o+fG(9)஻=e""cos(஺0)x8.xy=/+ᙠ;91,1,Ji:ᜐḄᑗyP|}~ᔣᡠᡂḄ஺\x=l9.ᑡᦪḄᐰᑖ:

31(1)z=/+ln(x+y)G(2)z=arctan----(3)z=sin(xy)\-xyx2+y2(4)z=!(5)z=2xe~y-y/3x+ln3G(6)஻=e"+),2+z2)G~x-y(7)u=xyx6(8)u=ln(3x-2y+z)G(9)u=arctan(x-y)2<>10.ᑡᦪᙠ;ᜐḄᐰᑖ(1)z=x4+y4-4x2y2,(1,1)GVᑍ(2)z=xsin(R+y)+ef,11.Hx=2,y=-1,Ax=0.02Ay=-0.01M<ᦪz=x2y3Ḅᐰᑖgᐰ@AḄR஺5⚪10—35<22•ᓝGZOZ1.ᦋz=஻v-uv=xcosy,v=isiny,,஺dxdy2.8z=஻21nv,஻=2,u=3x-2y,ᒹ<ᒹ஺ydxdyx3.82=2ᡈ211x'dr9.8z=e"-2y=sinr,y=b,—S0dr10.82=@¨5©9ªW:,«=3Ly=4/3,஺dtII.8®=@¯@°஺7:,y=e",±஺dx

3212.8z=tan93f+2X2y:,x=1,y=99x:,%<஺oxdx5⚪10—4I.8£+£=1<µ஺a2b2dx2.85¶9·:-6»'—%2'=0,i1஺dx3.8In[x~+y-=arctan—,——஺xdx4.8x+2y+z-2ylXZ\=0,ᒹ<ᒹ஺dxdy5.8eZ-xyz=0,\E\஺dxdy6.8x?+y2+z?-2oxyz=0,\E☘஺dxdy7.8=ln—,—E—஺zydxdy8.ᵫ»¼2xz-2xyz+In9½:=0ᡠ¾Ḅᦪz=zYx,yZḄᐰᑖ஺9.ᵫ»¼¿z=/2+>2ᑍ2+2/+3/=20ᡠ¾Ḅ◚ᦪḄnᦪÁE஺dxdx10.ᙢᵫ»¼¿

33xu-yv=0yu+xv=1ᡠ¾Ḅ◚ᦪḄ?nᦪ~~~y~~E■—»~7s°dxdydxdy5⚪10—51.m.ᑡᦪḄ▤?nᦪ(1)z=sin(ar+by)(2)z=arcsin(xy)G(3)z=x2yG(4)z=y]nx(5)z3-3xyz=a3(6)x+y+z=e~(A+y+z)<>o2o22.8[=©*(<05)+xsiny),--=-----஺dxdydydx3.8/(Æ,y,z)=x),+)2?+,/.(OQD/x(1,0,2),g/Ê(2,0,1)஺n.”ஹ452wd2ud2u4.8w=/*,xy,xyz)<%<%dydxdzdydxdz5.8஻=/(>2+y2+%2),_^.஺dx2a2a26.8஻=/(s)+g«),s=x—y"=x+y,dx2dy25⚪10—61.ᦪz=x?--2y2ᙠ;(i,2)ÏḼPᑍ}~ᔣ᪀ᡂ60஺Ḅ»ᔣnᦪ஺2.ᦪz=/2-2/2,+ª),2+iᙠ;(],2)ÏḼIÒ;ᑮ;(4,6)Ḅ»ᔣnᦪ஺3.ᦪz=lnJx2+)<2ᙠ;”,1)ÏḼÓ•Ô▲ÖᑖyḄ»ᔣnᦪ஺4.ᦪ஻=xy+yz+zxᙠ;(2,1,3)ÏḼIÒ;ᑮ;(5,5,15)Ḅ»ᔣnᦪ஺5⚪11—11.xyx=f-sinr,y=1—cost,Z=4sin9ᙠ;-1,1,272^ᜐḄᑗyg×Ö☢»¼஺2.xyx=—^,y=U]

347.x☢-ßߟ8x+z+5=0ᙠ;(2,-3,1)ᜐḄᑗÖ☢g×y»¼஺8.x☢z="2+P<2ᙠ;(Xo35⚪11—2I.ᦪ/(X,y)=4(x-y)-/-y2Ḅ᩽R஺2.ᦪ/(ᐟæ)=(2g-ª2)(2ᑐ-æ2)Ḅ᩽R<ᐸ<è*0஺3.ᦪ/(X,y)=e2*(x+y)+2y)Ḅ᩽R஺4.ᑡéêᦪᙠᢣᩩíḄ᩽R(I)z=xy,îx+y=lG(2)z=x2+y2,î±+)=1,ab(3)u=x+y+zî,+'+ª0,y>0,z>0oxyz5.IðñòS/Ḅ•ᑗóôõ<ᨵᨬᜧᕜòḄóôõ஺6.ᙠúûSaḄúᳫᑁýþÿᨬᜧḄᑁ஺⚪12—11.Riemannᑖ஺⚪12—20<%<11.0.xe!'dxdyḄ%ᐸ%D:-1dxdyḄ%ᐸ%£(:0

35(5)஺S(x—2)2+(y-3)2=4ᡠPᡂḄCD஺6.ᦋ^_.ᑡKLᑖḄᑖL`:pe“nx(I)[dy(2)]/(x,y)dyRJojyflfVl-x2-3-(3-x)(3)Jcqf(xy)dyS£dx[f(x,y)dy+τdxr./(x,y)dyR9(4)2“6)rd/(x,y)dyR(6)dx^(x,y)dy0I஺7.fg@ᑡFGᑖS(1)||(x+6y)dxdy,D:y=xy=5x,x=lᡠPᡂḄCD;9D(2)-dxdy,D:y=2x,y=x,x=4,x=2ᡠPᡂḄCD:(3)JJ-Jdxdy,஺Sy=2,y=x,xy=\ᡠPᡂḄCDR(4)|j(x2+y2)dxdy,D:y=x,y=x+a,y=a,y=3a[a>0)ᡠPᡂḄCD஺D8.h@ᑡijᙶ᪗mnḄKLᑖ^J᩽ᙶ᪗mnḄKLᑖS2RJ2Ry-y2p2T2cপ[dy[,t)dxR(2)Ld4”<={),=0PᡂḄW

36-14x41(1)[fdxdydzᐸ%V:-l0),y=0ᡠPᡂḄCDR(2)ffjgxd'dS,ᐸ%V┵☢+y2=z2y☢z=lᡠPᡂḄCD஺:JJJJC+y+14.ᑭᵨᳫ☢ᙶ᪗fg@ᑡGᑖS_________________________(1)JJ1(x2+y2)dxdydz,ᐸ%VSᳫ☢z=yjA?/0.b/_?v(A>a>0)y☢z=0ᡠPᡂḄCDR(2)_2+y2+z2)dxdydz%ᐸ%VSᳫ☢/+/ᓝ2=1PᡂḄCD஺V5.〉⌱ᙶ᪗fg@ᑡGᑖS(1)JJJxydxdydZ.ᐸ%VS☢x2+y2=1yz=i,z=0,x=0,y=0ᡠPᡂḄVᙠW•ᓶ▲ᑁḄCDR(2)+f+j+l)dxdydz,ᐸ,VSᳫ☢f+y2+2=1ᡠPᡂḄCD஺£X2+y+Z4-1⚪12—41.┵☢2=¤¥¦§☢Z?=2xᡠ¨_.©ᑖḄ☢☢஺2.ᳫ☢X?+y2+z2=஺2J☢z=q,z=gᡠᜳ©ᑖḄ☢☢஺423.fg☢¬+¬+=1§ᙶ᪗☢ᡠᒘ©ᑖḄ☢஺abc4.izy=x¬%ᵫn=0¯°=4Ḅ<±z±²x³´µᡠḄ´µ☢Ḅ☢஺5.¶ᱥ☢=44=24y☢[=0,2+=6ᡠPᡂḄᱥ(¹ºJ1)Ḅ»¼஺6.ᵫᳫ☢X?+)/+j=1PᡂḄ%¹ºJ᜛=2+)/Ḅᳫ☢Ḅ»¼஺7.´µ¶ᱥ☢=x2+y2y☢z=l(x>0,y>0)ᡠPᡂḄᱥḄ»¼(¹ºJp=x+yKz8.ᵫᙊ┵☢z=l-Jx2+y2À☢z=0ᡠPÁḄGÂ(¹º᜛=1)஺9.ᵫ´µ¶ᱥ☢2=y+>2À☢z=lᡠPÁḄGÂ(¹º᜛=1)஺10.ÄJR,ÅJ/?,¹º᜛=1Ḅᙳᒴᙊ%²ÈÂÉÊËÌzḄ³ḄµÍμ஺11.ÄJR,ÅJ/?,¹º0=1Ḅᙳᒴᙊ%²ÈÂÉᚖiËÌzḄ³µÍÐḄµÍÎ

37¼஺12.<ᱥÑᵫÒÄᔜJRÔr(O

38:⚪13—11.!<=>«)="+//+/஽7ḄC%DECḄᑗ=GH☢x+2y+z=4஺2.!<=r(f)=e'cosO+e'sin4+e'4ᙠf=0ᜐḄᑗ=ST☢UV஺cPY3.XY-=(Psinr-ecosr)x7?,ᐸ%P,Q.Aᙳ_ᔣa%!bᦪX஺)஺dr4.•fCg_hijᙠᙊᕜr=஻e«)7no%ᐸᙊbᦪ஺pqᐸrijv2t=ߟ-z-r%aᐸ%uijuḄv஺1r2n5.xr=-osina+஻cos஺+/?z%!S=/J(rxr')d஺஺:⚪13—21.ᢣ|}ᑡᦪaᡠᙠḄ%ᢣ|ᐸ☢1.z(1)u=----------------(2)u=arcsin—Ax+By+Cz+DJ.2+.2222.!ᦪau=X+yCM(1,1,2)Ḅ☢UV஺z3.!ᦪa“=IniHw=lḄ☢%ᐸ%rr—[(x-a)2+(y-.)2+(z-c)?஺:⚪13—31.!Jj/—y2)d“‘ᐸ'Lᱥ=y=%27C°(0,ᑮCA,4)Ḅi஺0)(22.!jydx,ᐸ%Lᵫ=x=0,y=0,x=2,y=4-ᡂḄᢥ⌮┐UᔣGḄ¡¢£¤஺3.!xydx4-(y-x)dy,¥<=J(o,o)(1)y=x\(2)_y=x2(3)y2=x\(4)y=x3o4.!Jydx+xdy,ᐸ%Lᙊᕜx=Rcosf,y=Rsin/ᵫ%]=0ᑮᓃ=]•Ḅ஺5.!%ydx+zdy+xdz%ᐸ%><=x=஻cosf,y=஻sin/,z=b%7ᓃ=0ᑮ

39t=2«Ḅ<=஺26.J(y2+z2)dx+2yzdy-x2dz%ᐸ%><=x=%,y=",%=p7®=°ᑮrt=1Ḅ<=஺27.!jxdᡀ+ydy+(x+y-l)dz%ᐸ%fC(1,1,1)ᑮC(2,3,4)Ḅ=஺8.±²³<=´ᑖ%P(x,y)dx+Q(x,y)dyᓄᡂ•³<=´ᑖ%ᐸ%L¥ᱥ=y=%2C(o,o)ᑮC(1,1)Ḅ<=஺9.±²³<=´ᑖ>Pdx+Qdy+Rdzᓄ³<=´ᑖ%ᐸ%><=X=f,y=J,z=f37·Hf0¸ᑮ1Ḅ<=஺:⚪13—41.ᵨGreen»¼½<=´ᑖ%yjx2+y2dx+y[xy+ln(x+yjx2+y2)]dyᓄ¾¿=Lᡠ-ᡂ஺7Ḅ²À´ᑖ%ᐸ%LÁ⌮┐Uᔣ%Â஺ÃᒹÅÆC஺2.ᵨGreen»¼ÇÈ<=´ᑖ§(x+y)dx-(x-y)dy,x2y2ᐸ%Lᢥ⌮┐UᔣÊᙊ(+4=1ᕜḄ¤Ë஺a2b23.ÇÈ<=´ᑖI=(ersiny-tny)dr+(excosy-m)dy0JANOᐸ%AROᵫCA(஻,O)ᑮCo(o,o)Ḅ78ᙊᕜ—+/=aXo4.ᑭᵨ<=´ᑖÇÈ΢=R=“os3f,y=஻sin3z(0«T2;r)ᡠ-ᡂḄÑ¢Ḅ☢´஺5.Òp¥ᑖᐝÔḄÕÖפḄ<=´ᑖ§(p(x)dx=i//(y)dy=0,ᐸ%e(x),Ø(y)ÙÚbᦪ஺

406.Òp¥ᑖᐝÔḄÕÖפḄ<=´ᑖJJ(xy)(ydx+xdy)=O%ᐸ%f(xy)ᐵH¸au=xyᨵ▤ÙÚÝÞᦪ஺7.pqf)T"²¥àáLḄâãCᨵᐵäáᡠåḄ¤Ëzᐵ,ᐸ%LÃyæ%!஻X<=´ᑖ_/(i2)ydjc_xdyJ(2,l)2xḄ஺8.iiffl£(x4+4x)-3)dx+(6x2y2-5y4)dyàáèḄâãCᨵᐵäáᡠåḄ¤Ëzᐵ%!<=´ᑖr(3,o)4a0nAI=(x4+4xy)dx+(6x~y~-5y4)dyḄ஺9.éᡝᙠᙶ᪗æ7ḄᢗìX=x+y2,y=2x)%-8,ᵫEé᪀ᡂé%pqfCᙠîᑁðo%éᡠñḄòá¤Ëzᐵ஺10.xᙠ8☢x>0ᨵéô=-á(K+ö)᪀ᡂé%ᐸ÷_ᦪ%r=ylx2+y2«prqᙠîééᡠñḄòáᡠå¤Ëzᐵ%äàáâãCᨵᐵ஺II.Òp}ᑡô஺,)0ᓃ+஺(ø>)€1úᙠ᦮)ü0y☢ᑁýbᦪ஻(ᑍ,ÿ)Ḅᐰᑖ᪵Ḅᦪw(x,y)(1)(x+2y)dx+(2x+y)dy(2)2xyd+x2d)»(3)4sinxsin3ycosxdx-3cos3ycos2xdy(4)(3x2y+8xy,2)dx+(x3+8/y+12ye)')dy(5)(2xcosy+ycosx)dx+(2ysinx-xsiny)dyo)⚪13—51,-JJx'dydz,ᐸ/,S01ᳫ☢——++4=1(x20)Ḅ7ᑖ81ᳫ☢Ḅ᜜:0sIEo2.,-2y2zdxdy,ᐸ/50ᳫ☢=2+y2+/=R2Ḅ?@7Ḅ?:஺53.B-C(ᐗ+y+z)dxdy+(y-z)dydz,ᐸ/S0Eᙶ᪗☢HI☢x=1,y=1,z=1

41JᡂḄLMN⊤☢Ḅ᜜:஺4.PQRST☢UᑖJ1W஺,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dᡀdyᓄ0QST☢sUᑖ(1)5[I☢3x+2y+2j.=6ᙠQᓶ▲Ḅ7ᑖḄ`:(2)S[bᱥ☢d=8-஺2+e2)ᙠ=஺),I☢`MḄ7ᑖḄ`:஺)⚪13—61.fᵨSlokesjk,-?ᑡTmUᑖ(1)J(y-z)dz+(z-x)dy+(x-y)dz,ᐸ/ᔆ01ᙊ/+/=஺2R+)Jrab=l(a>0,s>0),tu/vLᔣxyz:|1ᙊ8⌮z┐Mᔣ(2)ᔆ2yd+3xdy—Edzᐸ/1[ᙊᕜ+)”+j=9,z=0tuzvLᔣxy8⌮z┐Mᔣ஺2.fᵨO-Gjk,-?ᑡT☢Uᑖ(1)ὡ*2-yz)dydz-2x2)dzdx+zdxdy,ᐸ/S[ᵫI☢1=a,y=a,z=஻HEsᙶ᪗☢JᡂḄLMN⊤☢᜜:3ு0)(2)ᨵxdydz+ydzdx+zdxdy,ᐸ/S0ᳫ☢k+y?+z?=R?Ḅ᜜:s(3)ᐭ3dydz+y3dzdx+z?dxdy,ᐸ/S0ᳫ☢x?+)/ᓝ^2=Ḅ᜜:஺s)⚪13—71.fᵨMᔣᦪjk0ᙠ|Mᔣ`ḄᢗMᦪ஻=+”+”ᙠ¡M(l,2,3)ᜐ¤ᐸᔣ¥MᔣḄMᔣᦪ஺2.ᦪu=x2+2y2+3z2+xy+3x-2y-6zᙠ¡Ml(0,0,0)¦᜜(LLDᜐḄ©xMᔣª«஺ᙠ¬¡ᜐḄ0®3.¯°஻[mឋᦪu=or+by+cz+dḄᐙᑖµ⌕ᩩ¸[grad”[ºᔣ஺4.¯°ᦪ஻=஻(M)¤»¼☢`½TmḄMᔣᦪ¾»¿®஺)⚪13—81.ÀᔣA=yzi+R+xyk0(1)ÂᙊÃX2+y2<^2(0

42É2ÊËÂÌᙊÃNᐰ⊤☢ḄÇ஺2.divAᙠÎÏ¡ᜐḄ¼(I)4=/1+>3/+234ᙠÑ(1,0,_1)ᜐ(2)4=4Ó2Ô/+224ᙠÑ(1,1,3)ᜐ(3)A=xyz(xi+W+Ö)ᙠM(L3,2)ᜐ஺)⚪13—91.ᔣA=-yi+×+ؤ?ᑡTmLᔣḄÙ(1)ᙊᕜ+y2=R2,Z=0(2)ᙊᕜ஺-2)2+y2=R2,Z=O02.ᔣA=xyz(i+J+fc)ᙠ¡M(l,3,2)ᜐḄÛ஺3.ÜÑᔣA=P(x,y)i+Q(x,y)j,roiA஺)⚪14—1᪷ßàᦪᦈâ¦ãᦣḄÏåᑨÏç.ᑡàᦪḄâᦣឋ:00_________00i.+1-஺(2n-1)(2஻+1)n=lW=10000.H7C3.sin——3-Zn(n4-1)(/1+2)Z71=16n=l)⚪14—21.ᑨÏ?ᑡàᦪḄâᦣឋ:_8è—᱄1111(1)9+9293+1(2)—I------1—H---------369121!+2!+3!+4!+•••18182]183)++Tî…஺692.¯°᝞ñᦪᦈâW?஻ãᦣòóàᦪ+ôÊãᦣ஺n=\஻=1஻=1

43)⚪14—31.ᑭᵨö÷ᑨøᑨÏ?ᑡàᦪḄâᦣឋ:ù1(2)y8—1J—8tÉIÊú2஻-1—("+1)(«+4)ব£n,1=1஻\81(4)-cos—É5Êy—É஻ýÉÊÊ(6)V-L.Iú1+“"£ln஻2.ᑭᵨᑨᑨᑡᦪḄᦣឋ,ஹ+28cn,ஹ62”•'1!ு-----ফ(3)>------nn஻=1o«=1஻71ভᱏ.ম0ntan——42n3.ᵨ᪷ᑨᑨᑡᦪḄᦣឋ:nnফyঝ!~1~(1)2஻+1tr(in(«+i)rQ0(4)஻=|1஻+An00(5)Zᐸ?%AB8!,஺EF஻ᙳHIᦪJbwa஺/»=14.ᵨ〉NḄOᑨP.ᑡᦪḄᦣឋ:81Q03”•n\(1)y—(A>0,/?>0)(2)z”=100(4)>2nsin—4(5)n=l°V⚪14—4ᑨᑡᦪḄᦣឋ᝞YZᦈḄᢣ]Zᩩ_ᦈ`Zabᦈ:

441.1—+cV2V3V4-L--L-L-L-±^+++++2.In2In3In4In5

45(n+1)1.p1.p(-l)n+1.713.--sin—+Fsin------•,+sin------+•••ᐔ3347tn+\00(-1)"T2.4.En

46=\8n(n-l)jo5.ᓃe?n=loV⚪15—21.fᑡᦪḄᦈg:00(1)4(2)Z(3)஻=1n=l00x(4)E(6)hಔj""=1஻3”n=\,5noo2X3XXx"(7)Z(lnx)"—+-----+---------+…+...........................F…o22-42-4-62-4-6......2nn=l2.fᑡᦪḄlmᦪ84/1+100v(1)y—(2)»x"Tব஽4஻+1n=lW=182n-l813.foᦪy--Ḅlmᦪ,pfᦪு'-----------Ḅl஺£2஻-1r(2"-1)2"V⚪15—31.sFᑡmᦪtuᡂMaclaurinᦪ஺(1)e~x4(2)cos2x4(3)cosx24

47'O(4)yX(6){|——1-xx"~-5x+6*arctanr,1-x-----d?(8)(9)'oITT2.smᦪf(x)=cosxtuᡂP+()Ḅᦪ஺3.smᦪ/(x)=-tuᡂ(x-4)Ḅᦪ஺1-x4.smᦪ/(x)=-------tuᡂ(x+2)Ḅᦪ஺x2+4x+8V⚪15—4ᑭᵨmᦪḄᦪtuᑡᔜᦪḄ0.0001஺.ᐔf051|1.V245o2.sin—o3.---------dxo20Joi+d2dx(ᓝ஺0.56419)oV⚪16—11.(1)smᦪ0(AO

48-1(-ᐔ

49V⚪16—51.Á/(Â)Zᕜ¯H2Ḅᕜ¯mᦪÃᙠÄÅ-1,1)0Ḅ⊤¶H/(Æ=©-'஺Ès/(0)tuᡂᢣᦪÉḄFourierᦪ஺2.Á஻(஺Zᕜ¯HTḄᕜ¯mᦪ஺ÊËÃḄFourierᦪḄᢣᦪÉH>>00«,2/1E/ஹhrhyl.nTTT1—.ஹw(r)=——+—>—sin------eT(-oo

50(1)x2ydx-(x3+y3)dy=0(2)x+ycos—ydx-xcos—dy=04XX(3)xy'_y=xtan(4)xyr-y=(x+y)Inx+yXx2.ᑡᑖᡠᩩḄᱯ:*'+,'2,⋰=2./஺,=τ(1)yr=—+yপ=2yx(3)xyr=y/x2-y2+y,y(l)=lr(4)x(lnx-Iny)y=y,y(l)=13.ᑡᑖḄ(.)ஹ2y—2y—x—2(1)y'=2(2)y=x+y-i)x+y+4dy1(3)(3y-7x+7)dx+(7y-3x+3)dy=0(4)dxx+y-16⚪17—41.ᑡᑖḄ()/ஹ2dy0x(1)cosx——+y=tanx(2).7==dx-(3)x2y'-y=x2ex(4)xy1+y=sinxo2.ᑡᑖᡠᩩḄᱯ:dyB+2-3x2(1)—:——ytanx=secx,y(0)=0y=l,yপ=0dxdxx3<3)<--@y=2(x-2)2,y(l)=-2(4)--6/=-10sin2f,Z(0)=-x-2dt23.CDEḄᑗEᙠHIḄJKLMNᑗOḄPᙶ᪗STU☢DEḄ஺dy2dy2(1)--+y=y(cosx-sinx))(2)——3xy=xy:dxdx(3)y'+2xy+xy4=06/(4)Cdy123dxxy+xy-5.XᦪZ᧕\]^_C`ᑖḄḄXᵨ\bC஺c\]ᡃeCfC▤Eឋijk*2,Ḅ(lSᑣnoC▤Eឋᓅij*1,Ḅqrs*2,Ḅ(tḄXᦪ஺ᣚᡂwxyfzᦪC*x,|}ᑮSᓽ*1,ᨵ᝞-[p(x)dxy=C(jv)eḄ஺ᵨ\^_C▤Eឋij*1,Ḅ஺

516⚪17—51.ᑡᑖ:(1)2xydx+(x2-y2)dy=0(2)2x(1+y)x2-y)dx-^x2-ydy=0(3)e-Sdx-(2y+xe-))dy=0(4)(1+/sin2x)dx-ycos2xdy=0(5)—dx+(y3+lnx)dy=0x(6)+2x)J+S)dx+()S"+22)S+Sdy=0xdv—vdx(7)xdx+ydy+---------=0(8)(xcosy+cosx)yz-ysinx4-siny=0ox2+y22.ᵨḄ\SᑡḄ•ᑖSᯠl)(1)(x+y)(dx-dy)=dx+dy(2)(x2+y2+2x)dx+2ydy=0(3)a(xdy+2ydx)=xydy(஻w0)(4)y(2xy+ev)dx-evdy=0o6⚪17—61.ᑡᑖḄ()(1)y"='y'(2)y"=yS+xX(3)yy"-(y')2-y2y'=0(4),\”C1=0஺2.ᑡᑖᡠᩩḄᱯ)(1)yn-a(y,)2=0,y(0)=0,yr(0)=-l("0))(2)y஻+(V)2=l,<0)=0,/(0)=03(3)(l+/)y"=2.:y(0)=1,"0)=3஺3.¡ᨵ•¢£¤mḄᱥ§Sᙠ¨©tᵫ☟¬®S᝞¯¨©°±¤/?=42r2,ᐸt´¤ᱥ§µ¶·¸S¹¤CXᦪSᱥ§®ḄKºs»¼½fḄzᦪᐵÀ஺6⚪17—81.ᑡᔜᑖḄ()(1)y"+9y'+20y=0(2)yn,—y=0(3)y"-7y'+\2y=5(4)2y"+y'-y=2e'(5)yn+a2y=eA(6)2y"+5y'=5x2-2x-1(7)yn+3yf+2y=3xe~x(8)yn-2y'+5y=evsin2x(9)y"+y=e'+cosx)(10)yn+y=(2x2-3)+4sinx2.ᑡᔜᑖÄxᩩḄᱯ:(1)y஻+2y'+y=e-x,y(0)=0,y'(0)=0;

52(2)yN-3y+2y=e3v,y(0)=1,y'(0)=0)(3)yn+y=-sin2x,y(7r)=1,y'(%)=1(4)y'஻+3y"+3y'+y=l,y(0)=y'(0)=y஻(0)=0஺6⚪17—9ᑡEulerḄ()1.x~yn+xy'-y=0)2.x2y"-4xyf+6y=x3.x2yn-xy'+2y=xlnx4.x3y1'"+2xy'-2y=x2lnx+3x<,6⚪18—11.ᵨᦪᑡ᩽▲ḄxËÌÍ:(TÏ1(3)lim^—=3(1)lim——=0(2)lim(l--—)=1n-x»஻n->oc2..2஻—1„(4)lim—=0(5)hm------=0(6)limqn=0஺஻-83஻/9஻+7஻T82.ᵨᦪᑡ᩽▲ḄxËÌÍᦪᑡÕ(-1)"Ö×ᦣ஺3.¡“>0,ᵨᦪᑡ᩽▲ḄxËÌÍ᩽▲limÚ=1஺஻T84.ᵨᦪᑡ᩽▲ḄxËÌÍᦪᑡ᩽▲ḄᜳÜÝᑣ஺5.Þßà\»ᦪᑡÕ““Ö᩽▲]4ḄxË]ᔲMâSãàÍᳮᵫ஺(1)åNæçxḄ£>0,éᙠê᦮ᦪN,í}î“2N¼Sᨵ(2)éᙠê᦮ᦪN,åæçxḄ£>0,í}î"NN¼Sᨵ(3)åNæçx£>0,éᙠïᦪᔊSí}î"2M¼Sᨵlw“-AI<£(4)åN0<€<1,éᙠê᦮ᦪN,í}î஻>N¼Sᨵ(5)åNæçxḄ£>0,ᨵê᦮ᦪNí}î஻>"óᨵ1"“-AI00/(x)->+oof(x)f-00D£>0Jb>0,Xf%0<1x-x0l

53VM>0,3X>0Xf8lxl>XWl/(x)\>Mj->4-00X—>-002.ᵨ$ᦪ᩽▲Ḅ():(I)lim^^=2(3)lim-J~x=4a(«>0)alim9:4<(4)limcosx=cosa(5)(6)lime'=0஺x->aAT௃X-lA'->-003.ᵨ$ᦪ᩽▲Ḅ()ᑡF⚪:(1)᝞Ilim/(x)=A,limg(x)=B,ᑣlim"(/)+g(x)M=A+8XfX஺A->.r0X->X()(2)᝞Ilim/(x)=4,limg(x)=5,(8w0),ᑣX->00XT8fWArlim----=—oXT8g(x)B4.ᵨHineᳮ()$ᦪ᩽▲ḄTᑣUVWᑣ஺5.()᩽▲limxsinxXYᙠ஺XT+8[⚪19—11.ᑏ]^ᔜᦪ`Ḅaஹcd(1)E=ux\a)aᨵd஺XT+co2.m/*)ᙠ3,6)alim/(x)=A,lim/(x)=5,A<8,IJV஻£(A,5),x->a+x->b~

543xe(a,b),/*o)=஻஺03.m/(x)ᙠ஻,a᝞I£஺,ᦪᑡ&”}ᦈ,lim஻4)=//,():KT+O03xe(a,b),/(¡())=஻஺04.ᵨu¢£((1)y=x2ᙠ0,2Mau¢;(2)y=x+sinxᙠ(-8,+8)au¢஺5.q/(x)ᙠa,+8)alimf(x)=A,()/(x)ᙠ(a,+8)au¢஺[⚪20—11(x¦ᨵᳮᦪ)1.m/«=-1(X¦kᳮᦪ)()l/(x)lᙠ§¨©,aª«¬/(x)ᙠ,®aXª«஺2.¯°i☢Ḅ$ᦪᙠ²³atᔲª«஺প/(x)=xMA-€wa,bx<0(x=0)ফ/(x)=111xelOJJ—\--------

55fg(x)dx=ff(x)dx.JaJa3.¯°ÓÔ,®aḄ$ᦪ/(x),I/(x)I,72(½Õὅת«ឋḄᐵÚ஺[⚪21—100i.qÛᦪz”.ᦈÝᐸᔜ⚗ß᣸á•⚗âãᩭåæXçèmvåæ(”?t⚗ᐜᢣḄ஻=Mj᦮ᦪ)ᑣìÛᦪ{ÛᦪḄʲ஺2.ᑭᵨîïτ111ð11+—+—+…+—=C+ln஻+£,23nᐸÉCtòᦪ%—0(஻—8),()3.mÝÛᦪ1__1___1_J____1____1_J____1_____1_++2242+326282+52102122(1)Ḅᔜ⚗ßì᣸ᑡᡂõÛᦪ__1_J____1_J____1_öᓝ7uXᓝøuùᓝ…(2)ú§3஻{⎇஻ᑖ⊤ýÛᦪ(1)Ê(2)Ḅþ3஻⚗ÿᑖ2஻⚗ᑖ஺Slim—=1c⚪21—2261.ᦪᑡ஻ব஺஻஻ব=-----,ᦪ/ಘᙠ$%&0,1()ᦈ+,-•/ᦈ+஺(1+X)M812.1ᦪ£3ᙠ$%(-8,+8))3/ᦈ+஺⚪21—31.6ᦪ2+X+2/+/+3_?+…Ḅᦪ஺6ᦪ:)32.Ḅᦪ஺£2+3஻⚪22—11.ᑨ>?ᑡ@ABᑖḄᦈ+ឋ:

56j+°°dx(1)(2)1F+]h1+xH2(1X'(lnx)3'(4)[Jdx஺J஺Vsinx2.ᵨᔆ-ᦪᡈ3-ᦪ⊤Y?ᑡBᑖ:'+0°,20(1)fx"e"/,dx(/z0,n>0)H(2)e-xdx(n>0)0r1dx(3)-071-%,/4⚪22—21.6?ᑡᦪḄ᩽▲2p+t1(1)limycos(xy)dvHফhm-----z----7dyo▲TOJOioJx1+x2+y2r^ln(l+xy)2.᜛(x)=J0dy,hi/(x)0y3.F(y)=&1(x+W(x)dx'ᐸm/(x)nopᦪq6r(y)஺7C4.hiBᑖ/=(2ln(cos2x+a2sin2x)dx(a>0)஺Jo5.3ᐗᦪ/*)ᙠ&஻,ᑗ)xyq61ᦪy(mf(t)sink(x-t)dt(c,xe[a,b])z{pᑖ|}y"+k2y=f(x).⚪22—31.~ᑡBᑖᙠᢣ$%)3/ᦈ+r+CO2(1)L(t)=e-tvdxrG[r,+oo),/>0H00*o,+8(2)L(Q)=e~axcos^dxae[cr,4-co)«>000oJor+co22.hiL(a)=e-AcosaxdxoJof+ooQ_x_Q~^x3.hiBᑖL=-~--dx஺Jox4./r>0xyq᝞,஻/(r)dr/t=a"=bᦈ+஺1ᦪJoL(Z)=஻/(r)drᙠ[a,)3/ᦈ+஺

57

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭