数值分析(宋岱才版)课后答案

数值分析(宋岱才版)课后答案

ID:83481262

大小:8.02 MB

页数:59页

时间:2023-07-06

上传者:灯火阑珊2019
数值分析(宋岱才版)课后答案_第1页
数值分析(宋岱才版)课后答案_第2页
数值分析(宋岱才版)课后答案_第3页
数值分析(宋岱才版)课后答案_第4页
数值分析(宋岱才版)课后答案_第5页
数值分析(宋岱才版)课后答案_第6页
数值分析(宋岱才版)课后答案_第7页
数值分析(宋岱才版)课后答案_第8页
数值分析(宋岱才版)课后答案_第9页
数值分析(宋岱才版)课后答案_第10页
资源描述:

《数值分析(宋岱才版)课后答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

Ḅ⌕(1)ᨵᦔᦪ஺(2)ᦪḄ▲஺(3)᪷⌕ᑖ᪆஺!"Ḅ#$%&(1)'()*x,-./0X*,xḄ345/06e*=x*-x,X*Ḅ'(஺*(2):()^*=—ozX(3)'(▲)£*=k*|=[x*-XD(4):(▲)£*==ᓃd஺(5)ᐗᦪḄ'(▲)*ᐗᦪ/(X)=O,ᑣ£(/*)=0•£(/)(6)ᐗᦪḄ:(▲:*ᐗᦪ/Rx,yT=O,ᑣ£R/*T=T•£RU*T(7)ᐗᦪḄ'(▲:(8)ᐗᦪḄ:(▲:

1W⚪Y᪆1.[ᑡᔜᦪ^_`abcdᐭfᑮḄ45/0R1Thᢣjklᨵmnᨵᦔᦪ0R2TᑖopqAA2Ḅ:(▲஺Xs=1.1021,X*=0.031,x*=385.6,xs=56.43023Y)R1T%sᨵ5nᨵᦔᦪ0u2*ᨵ2nᨵᦔᦪ0vsᨵ4nᨵᦔᦪ0vsᨵ5nᨵᦔᦪ஺ফA=xxx,=xx,xL=᳝£,Ḃ=X,X,|⚪}~),4Ḅ45/0123232~-dxdx8X}23Xs,x*,Xjᑖo,᳝,஽,345/஺2ᡠ0.2154=,ᑣᨵ=_1,b=_-^,ᳮᨵ4,*,42Ḅ45/0x,*,%*,0-ᓃ%⊈Rxj-%4Ḅ45/0ᐭ:(▲%&:2.Ḅᜧ,100cm,᪵ᐸ☢alen??Y)*Ḅ,x,ᑣ☢,S=/,=2x,ᙠ¦§*X*,Ḅ45/0S*dx

2☢Ḅ45/)ᵫ⚪}~)5T=©]£R%•4]ᓽ)2X*-£'X*41¬j)£,X*<—^ߟ=0.005cn?»v'2003.f®¯L,=4.32m,°,/=3.12m,±²°Ḅ▲ᙳ,0.01m,h´®¯☢S=LdḄ▲µ:(▲ᑖo,¶·¸SvY)*s=/dᑣᨵ)j=d,—=l஺ᙠ¦§/*,d*S*ᑖo,/,d,sḄ45/:dldd¹…ஹ¼430.0744:(▲,)£,S=---------------7|S*|4.32x3.124,[ᑡ%&᝞¾q¿ÀÁÂ.)2*_]1ÃXḄ'(/ᐙᑖÅÆ0q¿஽sR2ÃNḄ'(/ᐙᑖᜧÆ0q¿%sR3ÃxḄ'(/ᐙᑖᜧÆ0-R஺Y)R1TÃÇ->0Æ0^—22+22(e"+i)e'[e'e')e'[e'+e')2(e'+e')2(e'+e')W+I1,N+l2ÃÉ-00Æ0-)_—^lx=argtgx=argÊ(N+1)-argtgNJN1+X-N

325.Ëij{%}ÐÑ⌴¬ᐵÔ”=10Ö×I0n=l,2,...,Ù=Ú”1.41,q¿ᑮmÆᨵ¶ᜧ¸¦3q¿ᦪ/ÛÜᔩ¸Y)Þ~Â./%=ᦈ045/¿=L410*àlḄ,ᑣᨵ)8=á-UD|â஺7)-(1%ߟ1Dä஺å1%஺£2æç|=|âè)-(ὡêD஺ë-=10°£஺íî¬ᡠ&஺=ð-ñD|(1஺H-1)-(1஺ó1D10Å஺-410%=100ô0|^2-1.41|ô101°x^x2=^x081016.q¿f=ö⊈01.4,÷øq¿µᵨ1ஹᩭq¿,û3ᨬý¸(3+2¾Y)ÿ⚪᪀⌼ᦪ“x)=(x-l)*,ᑣ/z(x)=6(x-l)5,ᵫ£(/*)=|/(x*),H*)=6x(1.4-1ᓣᦈ$1.4%6x0.0124x(xI0i=0.0030727.-./011-16*+1=0Ḅ456᪷8⌕-ᨵ3;ᨵᦔᦪ=஺?@ᵫ-᪷@xJ±J6T.ᡠB஺᳝=8+E8F2=8-GHIJ@45Ḅ᪷K஽=8-᎖8ᵫNOᦪNPQᳮᑣᨵ@(8+G)(8-E)1x=8-V63=7~^7=;-=———-0.06272-(8+V638+V638.᝞Yᑭᵨ\;ᦪ⊤^_1-cos2°,dᵨef0g^_hH4iYḄ஺?@1-cos2°®1-0.994=0.0061-cos2°=ᔳ-2"X0-0349--«6.092x10-4l+cos201.9949.nxḄN▲K6,-VḄN▲஺?@ᵫ⚪IJ@n஻x)=yrᑣᨵr(x)=100X89ᙠvwn£KXḄOxy8/*Kz

4ḄOxy8ᵫ{JXḄN▲K6஺£(/*)}/'(x(x*)_I஺஺(x)_100e(x*)ᡠB:=1006"FT|4*)|=(z"010.{J☢s=labsinc,ᐸcK,0c>0.,sabtgc2¶7·¤45/Ac_.ᡠB¸¹—W----1----1---ᡂ¼஺ah

5$½¾Ḅ¿À⌕-(1)ÁᵨÂÃᨽÅÆyÇÈÉÆy-Ê▤ÆyÌ⚗஺(2)ÁÎᵨÆyÏ⚗-⁚Ñᦪ஺(3)ÁÎᵨᙳḄឋÔ஺.½¾ÎÕÖḄ×Ñ(1)ØឋÆy@L,(x)=l(x)y+/|(%)Úo00(2)ÛᱥÆy:L,(x)=/(x)y+Z](x)y+1(x)y»00t22(3)஻/Æy@=(x)B஺k=0(4)ÂÃᨽÅÆyÏ⚗:R“(X)=/(x)-L.(x)=/"ভ%(x)஺஻+1!(5)ÈÉÆy@N(X)=/(X)4-/[X,X](X-X)+--/[X,X--X,](X-X)(X-X)--(X-X„,)«00I001,01If(xJ)(6)/á,â,…%]=£(x-x)(x-x,)---(x-x…(xfjä10(7)f[x,x„-x]=^p-.0nn\(8)ÈÉÆyÏ⚗:R“(x)=஻x)-N“(x)=/[xo8X]…x0+i(x)஺

6½¾À⚪?᪆1.éḄ$êᑡìᦣÑ(1,0),(2,—5),(3,—6),(4,3),d-LagrangeÆyÌ⚗d஺?@nᡠ-ÆyÌ⚗K஻(ᐗ)=£3")=/஺(F),0+/1%>ï+/2(')ð'{J@x=L8(ñ0k2%=-5X=3y=-6x=4y=3,ªᐭÆyòᦪ()2233.ó.1ô-1)(1ô)._õ)_(x_2)(x_3)(x-4)°(X஺$-12ïõ$13)(-1X-2X-3)JzX(x-Xo)(x-X2)(x-23)=(1)(3)(1)1(X1-XO)(X1-X)(X1-X)(lx-lx-2)23JzA(x-Xo)(x-Xi)(x-X3)=(xT)(x—2)(X-4)v2(12$%0ï12$%)(12$ö)(2X1X—1)ᓄøªᐭp(x)@p(x)=x3-4x2+32.ù/(%)=216-3/+/+1,-/[3°3…36],/[3°,3'---37]O?@ᵫ/য(x)=2x6!,ᡠB@/যব=2x6!,û(x)=ûভ=0.ᵫᙳḄឋÔ()IJ@/[3°,3,…36]=/)=^^=2/[3஺3…32]=/7I'=%஺3.éᦪ⊤012345Xi-7-452665128(1)dᵨLagrangeÆyg-$ü/ÆyÌ⚗“X)2hᵫý-/(஺.5)ḄOxy஺(2)dᵨNewtonÆy-$ü/ÆyÌ⚗N?(X)2hᵫý-/(0.5)ḄOxy஺?:প஻=3,ÿ0.5▬Ḅ4஺ᦑ2%=0,x,=l=-4஽=2,%=5,=3,%=26஺ᑣLஹ(X)=/o(x).yo+/|(x).y+/,(x).y,2ᢥ᯿⚪1ᦪ஺ᐭL,(X)஺L

7(2)&'()⚗+N(x)=f(x^+f[xo'X)](%-Xo)+/[%o*XeX2](x-Xo)(x-Xi)3ᑡ9ᖪ⊤=▤ᖪ?▤ᖪ@▤ᖪ᳝0-71-4325933262161ᡠ"^(X)=-7+3(X-0)+3(X-0)(X-1)+(X-0)(X-1)(X-2)=X3+2X-7=-5.87534.3%56⁚8(j=0,l,2,…,n)QRXS/j(x)@TU%=0,1,2,...,஻ᐸX/0)J=o1J1஻Yᦪ஺QZ᪷\⚪]&஻x)=x",ᡠ"ᨵᓃ=/(.)=%,aᔠc+ᡠ"ᨵRd(X)="“j(x)=£/j(x)y=L,(%J=o;=oj=O'Jᵫk⚗lᳮn/()=4(%)+R(%Jpᵫlᳮ?nUqOWJW஻tUR“(xj=Oᡠ"uᨵ/(xJ=L.(,)=x/஺ᙠwxyz{Xj=X,ᡠ"|⚪:Yxkjl^x)=X'ᡂ஺7=05.&f(x)ec2[a/]p/ভ=/(/?)=0,Qmax|/(x)|<^(/>-a)2max|//z(x)|<.QZᵫ⚪nஹ0=஺U%=0U="=0,ᦑ᪀⌼ឋ)⚗+ᓽ+L(X)=/°(x)/")+/஺)/")Uপ+U"X)=L(X)+R(X)Uফ+UᐸX.(x)=£(x_a)(xUব+Uপ(3)ᐭ(2)᦮ᳮII.f(x)=L(X)+R(x)=^^”a)+A^/e)+RJ2)(i)(x-b)a-DD—Cl2!

8ᡠ"¢(£4-111<-----max|¤…¥¤j¥¦wx"=§--2!a

9Õn"cᦪ\Ö=)⚗+U×Ølw)⚗+ḄYᦪSÙw)⚗+஺Úᵨ'(ÜWx=/%+./-[%,x]x-x+/[x,X,x,]x-xx-x+0l0201…+/[%0UÝUÇ2UÞUÇ4U*5]¤%=%0¥¤*—ß|¥¤Ç=¹2¥¤%=à3¥¤%=à4¥,ᑡᖪ⊤:•▤ᖪ?▤ᖪ@▤ᖪâ▤ᖪã▤ᖪ஻᳝-2-5-116010-311001276310325186100N(X)=-5+6(x+2)-3(x+2)(x+l)+(x+2)(x+l)(x-஺)=£-x+l,@Y஺8.äᦪ/¤x¥,g¤x¥æç]èᦪa,b,QZ[«/1¤X¥+bg¤x¥][x,x,---x]^af[x,x,---x„]+bgê,ᓰ,••-%„]»0}n0iQZᵫîïᦪðḄnñUᡃó᪀⌼ᦪô¤X¥=4¤x¥+bg¤x¥,õöuᨵ+ᡂ:\_af(x)+bg(x)][x,x,-x]=ô(ß)]%,ᓰ,…x.]0ln=Ã0¤ÇÅÇ0%Å%¥…=________________♦¤%¥+%¤%¥________________=¤%Å.஺¥¤¹Å.¥,•■¤%Åø¥¤%Å%.¥…•¤%ᔆ%”¥ᵫᑖ+Üᑣ___-__________/x______________\+hXl___________r____gx______,________ᵨ¤ÇÅ70ÇᔆÇ¥….¤ÇᔆX/TXú¹û¥•…¤ÇᔆX”U=°¤ᓽ=70ᜧÅ%¥”“¤%-Tô¥¤Çᔆ“#”¤Çᔆ?,¥=t?/'[x,x•■-x]+Z>g[x,x,---x],ᡠ"|⚪ᡂ஺0ln01n10.Òlᦪ⊤0.00.20.40.60.8X,1.000001.221401.491821.822122.22554/¤XU¥×ᑖÿᵨNewtonNewton/0.05Ḅ஺ᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ<

10Ḅ>?@ABCD*ᑖEFᐭNewtonNewton@H/(0.05)=1.05126.11.O⌕56/(x)=cosx,xT0UḄVWᢥYZ[\hᑖ^Ḅ_ᦪ⊤*bᢥcឋ/0xeḄcosxḄ஺efhghᜧjklmᐸopqrḄst-uv_2_?10"஺ᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ<Ḅ>?@ABCD*Fᐭz⚗*ᓽ@26}40.02஺12./(x)ec2"+2[q,@*ᵨLagrangez⚗Ḅm*m:ᱯz⚗f2"+2(£]R(x)=/(x)-”2,(x)=2஻+2)!ᵨ(X)஺ᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ<Ḅ>?@ABCD*ᳮ2Fᐭz⚗ᓽ@2H*ᙠ-.஺13.2-uv3Ḅh⚗“(X),ᐸ¡”(-1)=9,(-1)=137(1)=1W,(l)=-1oᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ<Ḅ>?@ABCD*ᡠ2h⚗#H(x)=a+ax+ax2+ax3,Fᐭᩩ¨*ᓽ@2H:0l33//(X)=X3-4X2+4X«14.2-uv4Ḅh⚗p(X),ᐸ¡P(0)=«(0)=0*P(1)=P/(1)=1,Pফ=1஺ᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ<Ḅ>?@ABCD*ᡠ2h⚗#ᑖ᪆p(x)=a+ax+ax2+ax3+ax4,Qt234Fᐭᩩ¨*ᓽ@2Hp(x)=|?(x-3)2o15.5_ᦪ⊤012300.521.5஻¯)(1)ᙠ°±ᩩ¨/²=0.2,/(3)=-1³2´᪵ᩩ_ᦪS(X)·(2)ᙠ°±ᩩ¨/஻(0)=-0.3,/஻(3)=3.3³2´᪵ᩩ_ᦪS(X)஺ᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ<

11Ḅ>?@ABCD*Fᐭ᪵ᩩ_ᦪ*ᓽ@2H*ᙠ-.஺0.48x3-0.18x2+0.2x,xe[0,l]89#1x=J-1.04x-l3+1.25x-l2+1.28x-l+0.5,xe[l,2]50.68x-23-1.86x-22+0.68x-2+2.0,xe[2,3]0.5x3-0.15x2+0.15x,xe[0,l]2jx=--1.2x-13+1.35x-12+1.35x-1+0.5,xe[1,2]1.3x-23-2.25x-22+0.45x-2+2,xe[2,3]

12ᦪᨬ!V¸Ḅ?7⌕2(1)¹ᵨᨬ»¼½2¾ᔠÀc஺(2)¹Ácឋ_ᦪÂᓄᡂcឋ_ᦪ஺¼¸ÅÆÇḄÈÉcឋÀc¾ᔠ(ÊಘᧅভÊ0)஺஺(}3M=(஺ಘᨔ0Ê(Ïᵫ(}j=0i=03Ñ஺)=£ÓÔ)஺Ô)*ᵯf'=£o)WCyᵯFGজ,(KWyi=0i=0´¸7⚪C᪆1.஺°(x),@(x)…஺,i(x)…ÙÚÛÜ0,1ÝÞßᩗ᜛(}=âḄᨬã⚗äᦪ#1Ḅåæh⚗çᑡ*ᐸ&0o(x)=l,2*x஻(x)dxê°|(x)࠷)஺ᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ?@ABCD*ᙠîï45689஺89#(x)dx=12·.(x)=x-2;'Ü0,^^03//\263ó3=%-1+ᔊ஺2.ᑨp_ᦪᡈ(x)=l*/(x)=x,*ó(x)=%2_,ᙠÜ-1,1ÝÞßᩗ᜛(x)=låæ*b2.(}ᐸᙠÜ-1*1ÝÞßᩗp(x)=løù(X)*0")*ᡃ(û)åæ஺ᑖ᪆⚪ᑁ"#ᦟᩞ&Ḅ⌱()ᑖ*ὃ,-./0⌕2஺ᦑ4567⚪89*ᨵᐶ<Ḅ>?@ABCD*ᙠîï45689஺89#5

133.mO_ᦪüý…஺þ)Ùᙠa,bÞßᩗ᜛(x)åæḄ_ᦪü*ᑣ(x),ᵫ(x)…0,*)ᯠឋᐵḄᦪ஺ᑖ᪆⚪ᑁᦟᩞḄ⌱ᑖὃ!"#$⌕&஺ᦑ()*+⚪,-ᨵᐶ0Ḅ1234567஺4.89:ᑡ==-2,᳝=-1,x=0,x=1,%=2Aᩗᦪ0(x())=0.5,23

15A(x)=XÌᐭGHt(஺▂=£জè(%,)%)=5é)=(o஺0)Nটo(%")=75ê”)=஺ì)")=11875,(஺í=Z0,ᡃ(%,)y=3333(°j)=èটo(%,)y,=51.2275K<=0/=0ᡠs3stᑮsvbc[5,75][A>]=p333],Rt4=3.708_7.5,11.875_|[Aj|_51.2275_4=1.972,Ìó&t஺=3.071,8=0.5056,ᦑbcy=3.07le°s°56l9.ᵨᨬª«¬&ö᝞y=a+bx2Ḅ÷øGHùú^ᔠsvᦪ\஺192531384419.032.349.073.397.8yRᐜ¶y=a+s2ឋᓄdX=f,ᑣæH¾y=a+/?x,UV஻?=4,஻=1,0oÛxÜ="஺ýÜ=xÌᐭGHtÛèಘ=ὡ0oÛkÛ=,Ü=5Û஺éÜ=ÛᡃaÜ4GoÛÿ=5327"=£”%,=7277699,⊈”4ট஺஺JY=271.4ᑁ40,᝞ᑴJ=369321.5K5,5327a271.4ᡠ#$#%ᑮ#'()*:5327,7277699369321.5,%-a=0.05004,6=0.97258,ᡠ/()0->'=0.97258+0.05004x2«

16"ᦪ#ᑖ%ᦪ&ᑖ678Ḅ:;⌕/1=/ᔜ?@AB/CD஺2=Eᵨ/CDᑖ᪆IᦪKL஺3MNOPDQRSDTᐸVWX⚗஺4MNZᓄOPDZᓄQRSDTᐸVWX⚗஺\78EMNḄ]^DপOPD-/1a=«\^d/4+/ef஺ফQRSD-/4+4/⁐|^+/jবZᓄOPD-7“=*஺+4ᵫ8+/jf஺Lk=l_ভZᓄQRSD-S,,=*a+2»%J+0tu+fয஺N|_&=1K=0\27_5OPDḄVWX⚗-R,"=_/2xe-a'Jea,b6ZᓄOPDḄVWX⚗-%ᨴ=6|}2/஻஺”Sa,b78;⚪,᪆1.ᵨZᓄOPDZᓄSimpsonD'ᑡCᑖ஺1f"8;2RV4-sin2xdxK஻=6,1IᐭZᓄOPD$%8\1஻஺+}/+/পSU14024,T6&=1JT=^/0+}+/£|03562,6ফIᐭOZᓄPD$%:ᳮᑖIᐭZᓄSimpsonD$%:5=0.1115724,S=1.03577.86

172.'ᑡ/CDḄᦪᐸIᦪKL¡¢ᢣ¤ᡠ᪀⌼Ḅ/CDᡠᐹᨵḄIᦪKL஺প£J(ª“A/(¬+AJ(஺)+AJಘফ஺(ªAJ(o)+A/")+4஻i)fihব[/(xUj(j)+4஻o)+AjಘভAJ(—஻)+AJ(x)2A=A,+Ai+/L,-(1)²஻x)=l,X,/CDµᡂ·Iᐭ(1)D$%:0=h+h-AA-02j/i3=U+A)/z2214,%-&=&=§/?,A=—h{9Iᐭ¼D᦮ᳮ%-¾/(x>/-/(o)+-/?■/(//),J-/,333ÀÁ"x)=d,IᐭÃDÄÅÆÇ=ÈÇÉÊË/(x)=x4,IᐭÃDÄÅ,ÆÇ஺ÈÇᓽᡠ᪀⌼Ḅ/CDᐹᨵ3ÍIᦪKL஺i=Ao+Ai+A?(2)²“X)=1,x,X2/CDµᡂ·Iᐭ(2)D$%:g=A'x+46=A=+24121,%-4)=A,=—,A=—x,t~632Iᐭ¼D᦮ᳮ%:ÀÁf(x)=x3,IᐭÃDÄÅÆÇ=ÈÇÉÊËf(x)=/,IᐭÃDÄÅÆÇHÈÇᓽᡠ᪀⌼Ḅ/CDᐹᨵ3ÍIᦪKL஺4h=4+A+&(3)²f(x)=l,x,/,/CDµᡂ·Iᐭ(3)D$%:0=-4•}+A>'hy//3=(A+A)h2O28,4,,%-4=4=—/i,A=6h]

18Iᐭ¼D᦮ᳮ%-Ô1}•/(—஻)—gÖ/(xJ+|/r/(஻)ÀÁ஻x)=x3,IᐭÃDÄÅÆÇ=ÈÇÉÊË/(x)=x4,IᐭÃDÄÅÆÇØÈÇᓽᡠ᪀⌼Ḅ/CDᐹᨵ3ÍIᦪKL஺(4)²=x,/CDµᡂ·Iᐭ(4)D$%ÃY'\'[0=-4)/?+Axihh2,%-ᧅ=§,A)--4=1%Iᐭ¼D᦮ᳮ%-fJ(x*x+ÀÁ/(x)=x2,IᐭÃDÄÅÆÇ=ÈÇ஺ÉÊË/(x)=x3,IᐭÃDÄÅÆÇHÈÇᓽᡠ᪀⌼Ḅ/CDᐹᨵ3ÍIᦪKL஺3.ÅÚ-஺(Û--]/(0)+/প]6\[6প6Ü(0)]ᐹᨵ3ÍIᦪKL஺ÅÚ-Ý஻x)=lÞÆÇ=1,ÈÇ=g[l+l]-ஹ[0-0]=l,ÆÇ=ÈÇ஺Ý/(x)=ØÞÆÇ=àÈÇ=á0+l]-L[l-l]=LÆÇ=ÈÇ஺22122Ý஻%)=âÞ,ÆÇ=§,ÈÇ=g[0+l]-(■[2-0]=à,ÆÇ=ÈÇ஺Ý”x)=dÞÆÇ=ØÈÇ=—,ÆÇ=ÈÇ஺44Ý/(ã)=ä4ÞÆÇ=!ÈÇ=1,ÆÇᨵÇ஺56ᦑᡠ/CDᐹᨵ3ÍIᦪKL஺714.ᵨZᓄSimpsonDS“Cᑖpsinxdx,⌕VWçèéêEëìíJo2

19TT7T0,-ᑖ0îï|ðñòᦋᵨZᓄOPDÞ,⌕ôᑮ᪵KLíEëìí0,-ᑖ220îï|ð?b-a,-ZᓄSimpsonDḄX⚗ḄöÀA0:▲ø-ᵫù$ë¼ê⚪ú180£_5071I-I<——Z—<_!_ÿ[$“26஺ᓄ0Røᘤmaxls,nH-92160n4-21°4஻ᳮᵨᓄ!"#$%ᑣᨵ-(஻7"M)f]max*Ex+xlO',n-255°"\2n).5.01#$%/(xg°AJ(°)+AJ(i)+A2/'(°)%;<ᐸ>⚗⊤A$BC(/)=E஻(3஺GHI01#$JḄLIMᦪA,%A%A?%PᐸQᦪRSTUV%WᢣY0Z#$ᡠᐹᨵḄQᦪRS]>⚗⊤A$஺/1=4+4+4,^஻x)=l,X,f01#$aHᡂc%Qᐭe$f1..v75=0+A+A2ஹrAi,A஺k‘A=g'4=*ᡠme$nBf/(xgxg/(o)+p/(i)+\r(o),r/(X)=s3t%Qᐭe$%uv=p,wv=p,uvxwv%UIHI1ᵫ⚪{<|}B;=&/(4)/(%)=3!=6,ᡠm0᝕=%ᓽR\=_'r஻)Bᡠ0%$01#$ᐹᨵ3QᦪRS஺6.ᵨᓄSimpson#$fe%sinx#%⌕P|}10x◤⌕⁚Ḅᦪ,.f/(x)=-4e*sinx,ᙠ¡ᓄSimpson#$>⚗Ḅ¢£R()|=

20Qᐭ;<ᩩ§:©ª«¬R®ᜓJ)max|4^sinx|<10-6,,“226஺7.²³´ᑡ¶·¸"01#$%ᐸJ஻w(a,b)পK(b-a)/S)+pr஺(ᓃ-/(2)£,/,(%)

21$Ívᙠf1ᑖ:f/(èé%ê+ë’(í*+f3îᨌ?"ᵫÕÖ1ᑖJIᳮÎ/(x)g(xg=g(77)%/(x)Jx,஻e(a,A),Qᐭ$Ù¶⚗ᓄð%ᯠò£$᦮ó1ᑖᓽff/(x.ôᓃߟ/஻åE8.£1ᑖÏ/(sᧇ᪀⌼úᐹᨵ¶QᦪRSḄᦪ01#$஺,ÆÎ0,3϶(ᑖ%ᓽ¡⁚0,1,2,3.᪀⌼01#$Î/Gü=4஻0)+41)+42஻2)+43஻3)%ý஻%)=1%%%/%s301#$3=A0+Ai+A2+A343nA஺/5=O+A+2A2+34,92,AþaHᡂc%Qᐭ#$:W=o+A+4A2+944JaQ081I=0+A+84+27A3[A&ᡠᡠ᪀⌼Ḅᐹᨵ!ᦪ#$%ᓽ'“(9=*஺)+*1)+*2)+*3)஺“Joooo9.ᵨ/0-234%5n=2789ᑖf/e'dx஺ᑖ᪆'BCD⚪ᑁGHᦟᩞKḄ⌱MNᑖ%ὃPQRST⌕஺ᦑWXYZ⚪[\%ᨵᐶ^Ḅ_`abcde%!ᐭ/0234'fQ(x>/x=tAKQ(XJᓽaY:I*=0%//=0.7119418஺10.ᵨklm789ᑖ(1஺nxd'!ᐭoᓄqr⌴tᓄ%u'T|=?y஻i)+஻3)|=g%ᐔ=+?”15)g7+//14~9

22eJ3-1+++/ei_17%s=iS-ITdl=3T/23/19(23T“3)27043)3)94528548'Cl15d2__1L5dq,=4035%cC2=1-5?d4-1-5vd2-14175%=—C2-~C,=17"212~2.01473867஺2)τ64^64cl89302511./஻x0,ᵨqr78ᑖᡠuḄ[\¢£¤¥ᜧ%§¨ᐸT¡஺'ª«qrH/—/“=/?¬/,ᵫª«/஻x0®¯⚗R±=_3^²³´µ/“¶஺ᓽ/“ு/⌼ᡂ[\¢£¤¥ᜧ஺T¡'ᵫ/zXு஺a«»¼Hᔣ.¾¿ᦪ%qr☢ᜧC»Áqr☢஺

23*+&ᑖ,-Ḅᦪ/ÂDÃḄ`Z⌕(1)ÄÅÆÇḄÈᵨÉÊË¥Ì⚪஺(2)ÍÎkmÏᛞÑÒ஺ÓDÃÈÍÎḄÔÕপÉÊ'l=ᓃ+"(Ø%ᓃ)஺(2)Ù⌨ḄÉÊ'Û=%+"("%Û)஺বqr'Û=ᓃ+?/(%.%Þ)+/"%ß)(DÃZ⚪d᪆1.àË¥Ì⚪.ᙠy0,1|âãᑁ5äå஻=0.1%ᑖæᵨÉÊஹᦋéḄÉÊ®êᐺḄ¾▤Runge-Kuttaðᦪ¥78஺d'(1)ᵫÉÊa«'ñᓃ+a%”,y)=y“+O.lx(_yj=0.9y.஺%r+"(x%/ᓃ)(2)ᵫᦋéḄÉÊa«:=ᓃ+ö(Þ%%+¬ᓅ)Û=ø+)ùú«!ᐭᓄûau:y=v+0.1xÂüý9ᓃ%y.=y,+°ÿxKpnv=-(0.9y+0.91V1=0.905y»J஻+i2\஻

243ᵫᐺḄ▤Runge-Kutta$%&':,Ah)7)k^fyx,+^y„+^k)2,4=/(%.+஻0ᓃ+2J$%45y“+]=y“+&(9+2:+2;+<)=4ᡠ?ᨵ5ᓰ=6,2=-ᓅ+0.05x,0k=-y+0.05>;-0.0025,3n3=-%-0.1(-y”+0.059-0.0025ᐜ)0IᐭᑮপM:y“+|=y„+—(-5.70975)=0.9048375%஺60dy--=CLX+b12.ᵨST$%UVWX⚪y=y+ha+hb,y=y+ha^+hb,X1XiQᯠ}~IM5y=H^^,ah+nbhᵫ⚪&'0

25y+lOy=04.ᵨST$%VWX⚪,00¢0ᐜߟ"""஺[\:ᵫ·¸$%5ᓃ¾ᓃ+¿y,0ᓃ)+/("ᓃIᐭk=xyᓄj&M:ᓃ+r.hᔠ»Á{⚗0᦮ᳮ&M5ஹ0_5ஹ00i+-2ᓄjM5=ÅJ2-hJn+]2+hJn(2+/zJJn~'2+hᵫf'y°=l,ÈÉÊ%ᓄ4,ᓽ_(2-6[ᡂ஺ஹyn~{2+h)2+/i.ᵫ᩽▲Ï:-2hn2+h2+h02-4<2+/i-2/?\(-2/7ஹlimy„=lim=lim=lim1+——A~>0஻/?T0/iO<2+h)MI2+h)ᵫᯠVÑ0ᡠ?<%=b"=e~Xno2+஻6.VWX⚪¶k=10°Ò0᝞«§஻=,0[\ST$%¹MḄU4y“=h+UW)஺yÕ=1nInJ[\5ᵫST$%5y^^y^Lf^yJ,ef'Iᐭ&M5ᑶM=y“+_L100y.nn=y“(l+Ø)~I&M5yÙ=y,i(l+¥j0Áᳮ0?z{rM5%(1+Ü00ᵫyÕ=1ᨵ>ᔣ=¶1+ᵨ*'ᓽᐜ=(1

26ÞᵨᐺḄ▤ßàxáᛞ$%¹VWX⚪I)’:8.§¨©h=0.2,Ḅy(0.2),y(O4)ḄW஺U5ᓃ¾ᓃ+Wä+2ᓃ+2ᓃ+å>ᐸæ᝕y/(t0>,,)=%“+%'ᦇ2=/1%,,+*ᓃ+^é)=%“+ᓃ+°ê+°êå’ᓃ=/(%“+*%+ëµ+ᓃ+()ê+()êᓃh=/(ì+/70/+ẓ3)=X“+y“+°2+02î0eᓃ0å0ᦇ3,ᓃKIᐭ<%:.Jᓃ+ï674µ+”)+0.74+0244(%“+yJ+0.245,§⁚5Xo=0,X|=0-2,X=0-4,ÈÉᨵ:26.9840.764x="+0஺+30=1.2428,306.984/\0.76430ñ301.5836359஺Y10.UVWX⚪y,=10y--K1

27+l2'n-\f4\Jn+1JnJn-l/[)yo(f=f(,y.))E4▤ḄGᐸIJKLM⚗஺xain./*Oy,Qy“ᜐT$U▤VWXYZ[\*y]y_/?y'+ᔁbcᔁbᓝ஺e,ᳮOf,fgᙠvᜐT$VWXYZ[ᵫijYk4⚗lᨵ஻ᦑfKJn+lJn-lnJn+lf◤Z[ᡂ4▤VWXYᓽ"ᓽ*Jn-l

28II஻q=ᓃ=s/tᐭ2+஺ef,T=y*T=y*-*+4/+஺xy?11fydKOz{|Y}~j\*ᝯ+”'b+஺eজIIIIIO'aᙠ“ᜐT$U▤VWXYZ[*y]y,+%y*+ᔁb+ᔁb+஺ঝ191OজঝT$"*c7—,ᦑjYE4▤ḄIJKLM246=-+஺xᔢIJKLMḄ✌⚗c%y஻஺12../*ឋ456ᓃ]x/,_1%_ᓃ”+3/ᔣ+x3b+l/,b/T¡6E4▤ḄK=-1¡6EU▤Ḅ஺./*jY¢£y]x1¤y“+by,+1¥x"3/,“+§+lf¨পYOVffᙠyᜐᑖ«Z[ᡂU▤4▤4▤VWXYᓽ*/W—IJn+lJn-I'஻111Hhm/4\IIIlq~Hi/3\”d"+Q*\y.+஺xᔢqr]ᓃ+”,+®¯+஺xᔢf“i=y*_/?y*+,y*'+Ox²O{☢UY}ᐭপYᓄµ"\*ᓃ]¯+”',+¶*-x2"3/*+஺e¨ফY,¸OyᙠyᜐZ[ᡂU▤VWXYy='hL"lL"'Se\,v+hy+y+y+o¨^x3YOx2Yx3Yº⌕»ᐹᨵU▤½¾ᑣ*ᔳ=Lᓽ6=—1,66bw—l¡"Ãᐹᨵ4▤½¾஺6613.Äᦪab,c,dÇXYz“=È,¡É+c/,+d/.Jᨵyx%“J-ᓃ”=஺xËÌ%*Oy,f,fᙠvᜐᑖ«Z[ᡂ|▤U▤U▤VWXYᓽ*J/»-1JJw+lnJ3仇H--y+O31•(4”)43-y+〃/-y3!(4〃)(/\2nOz{ÍY}ᐭjY᦮ᳮ"\:

29q="“+/1(_4+,+0+")+ÑÒ_")s*+1+3+£|²,*+Õ+*_£)///*º᯿vᙠvᜐḄ|▤VWXYZ[YḄᔜ▤Äᦪᓽ"ØÙḄÚᦪ/«+1Jn…14%\஻=1,b=d=—,c=—o3314.ºi012⚪ḄÝÞy'=Ay(AY0),4▤Runge-Kutta6%+i=%+?(%+%2)q=ó*s*+¶*+஺e,Oz{ûY}ᐭjYᓄµ"\*q=(஺+஺)ᓃ+üýþ+C-c)஻2y+(>£/y+°W),a^b=1c—h=1᯿KᙠᜐḄ▤!"Ḅ#ᦪᓽ&'ᑮ)*+,+lb-2c=\/?+3c=1ᵫ012)*234ᦪ5ᦑ782)*ᓽ&57'஺=4,b=—3,c=-2;f2ᐭb+3cwl?@ᐹᨵC▤DE5FGHIJK✌⚗N»

302,-3᪷PQRḄST⌕V(1)WXYZḄ[ᵨ]^_;!"஺(2)WX᪷a⌕Vbcd]^_;!"eVᐸFGHIJK஺CQR[ghḄij!"(1)]^_;!"v,=x/m).஺*f'M(2)_;ᦈpqᳮs_;t*uv&஽)ᦈp0)*x=0(x)Ḅ᪷N£,y_*;JK,=-X*,|k-00~5lim_+ᔆ=lim4=C#0,ᑣ_;t*f8(x«-x*yJ4*ᐹᨵp▤ᦈp஺QRT⚪7᪆1.ᵨCᑖV)*V-x-1=0ᙠ1,2ᑁḄ᪷5ᑮ10-3஺ᑖ᪆0Q⚪ᑁNᦟᩞḄ⌱Gᑖ5ὃ¡¢£⌕V஺ᦑ¤¥dT⚪¦§5ᨵᐶ©ḄªS&«¬75ᙠ®¯¤¥d¦§஺¦§N%=1.325,92.°@ᵨCᑖ'ᑮḄ±ᑡ³xjNµឋᦈp஺ᑖ᪆0Q⚪ᑁNᦟᩞḄ⌱Gᑖ5ὃ¡¢£⌕V஺ᦑ¤¥dT⚪¦§5ᨵᐶ©ḄªS&«¬°@஺·¸¹Pº*»ᕆ,¹ᵨP½¾¿53.sᨵ)*J'(x)=dP/P=0,(1)°@)*ᙠÂÃ1,2¹ᨵÄ•᪷V஺(2)°@_;!"4+1=ÆÇ'(᝕=0,1,2,…)0¢ÊËÌ1,2ÍÎᦈpḄ5e

31ᵨ_;!"Vᐸ᪷Ïᑮᨵ8ÐᨵᦔᦪÒ஺°@(1)ᵫ⚪&4/(1)=-1<0,/(2)=3>0,Ô஻2)஻1)<0,ᵫÕjqᳮ&4“X)ᙠ(1,2)ᑁᨵ᪷஺×☢°ÄPឋ5ᵫÙÚᦪSḄ4Û/(x)=3x2-2x=x(3x-2)ᙠ1,2ᨵ/"(x)>0,ᓽ/(x)ᓫÞ⌴à5áâ⚪ᡂä஺(2)°@å4,ᓽ°(ὡ=ç+1,ᵫ/(x)=è(V+ᡝ.<1,ᡠë¢ÊËÌ4e1,2Íᦈp஺ªSí&ë¢⌱ËÌî¬8ï_47ñ¹òóôõᡂ஺4.0᜛(x)=x+a(x2-5),⌕ù_;!"Xp=FGᦈpᑮx*=6,VaḄûÌý஺7ᵫ᜛(x)=x+a(x?-5),&4“(x)=l+2ax,ᵫᦈpqᳮ(þ)»15ᓽk+2aÿ<1,:-<<0஺5.ᵨ/")/(%)/3=/—_?"1=0Ḅ᪷%“᳝)()ᑡ+4-ᐹᨵ012ᦈ4஺56789:;=஽()/(=ᦑ?:0(x)=I("(x),B஺(x)C7"(x)=l-EF(x)஻x)+/l(x)/(x)I,J:*L஻x)=0Ḅ᪷%ᓽ7f(x)=O,ᡠOPQᓄST7^(x*)=l-2(x)r(x,)%ᵫ⚪?9ZQᐹᨵ2ᦈ4%ᦑᵫ“(x*)=0,?7,[)=1=_____!______](x*)3(/)2-2X,-1^ᓄT72M=-1=____1____%`T(1)Q%“ಘ/330)-2.1bcপQᐭ஺(x)=x-/l(x)/(x)?7=T%32-2x-lxB°(x);▤C%c஻x)Ḅ᪷£ᐭ70஻(x*)=—6f~-%ᵫjxrL3(x1-2x*-l3

32ᡠO0஻X*HO,ᵫᦈ4lᳮ9%Zn⚪ᡂp஺6.rlsᦪ/uXwJBᑗX,ruxwyzᙠ%|0c஺56B0<2mᯅḄᦪ2,T=-.uᐝwᙳᦈ4j/uXw=0Ḅ᪷஺567ᵫ"-0uw%ᓽ70uxw=lfuxw%ᡠO7“==uxw|%T70ீ4/'uxwVM%ᡠO?T70ஹxxf'M3஺u᱐w=13T,ᙠ¿À=1▬ḄÁÂÃᓽ?஺u2wÄᳮ஺1t3%&-38./—2x-5=0ᙠ/=2▬´ḄÇ᪷%cᦋᑏᡂ«ᑡ£¤ÊQ%ËÌpÍÎḄ¼Q7u1wx=#2x+5,¼Q%“I=#2%+5u2wx=J2+^,¼Q:Ð=u2+—VXk3X=X3-X-5,¼Q"|=%*-5Ñᑖ᪆ÔÕ¼QḄᦈ4ឋË⌱Õᦈ4ᨬÙḄ¼QÚᐹᨵÛ°ᨵᦔᦪ²Ḅ´Ü᪷஺u1wÝÞ5ᨵ᪷ßàTE2,3I,ᵫ89?஺uxw=^2x+5,áâ:“ã=2.302x+5ᙠᨵ᪷ßàE2,3Iᑁ,uxw|

33(1)“é=3+10%—20=0ᙠßàE1.5,2IᑁḄ᪷;(2)/(x)=/-3x-l=0ᙠ᳝)=2▬´Ḅ᪷஺ᑖ᪆7ëj·⚪ᑁìTᦟᩞïḄ⌱ð1ᑖ%ὃÑòóô⌕஺ᦑörÚ÷⚪øù%ᨵᐶûḄÄü?ýÃþ%ᙠ¿örÚøù7(1)x*=1.5945621஺(2)x*a1.879஺ᜩ!᪷4Mᑖ$%&'10./-4*2+4=0ᨵ᪷=j,ᵨNewtonᵨf'M()*+ᐸ-.஺/0জ2ᵨNewton)3/!4/+4=0,560fl(x)=4x3-8xo&ᐭ<=%&>?0ᓽ600(x)=x_/_BC+4,DEFG*f'\)4X3-8Xx°=\,HI%&:K/)=1.25,0(᳝)=1.31464,OP)=1.42547619஺ঝ2ᵨ%&>?RS4-TUV)ᑣX=2,ᓽ"Z,_2[S+4.\᪵fE)4x--8xEFGx°=lHI%&00(%)=1.5,^(x,)=1.421254,^(,)=1.4142135»x11.2ᵨNewtonca=0,efghḄ%&>?)jᵫlmn#pḄᐹᨵrsᨵᦔᦪvḄwxG஺ᵫNewton%&>?}!=஽!41)ᓽ0/03"X)=x'-4=0,ᡠ|0f'(x)=3x2f'M^)=-K᦮ᳮ60=lᓽᡠgḄ%&>?஺xxf'(x)3x☢g“p)ᵫ5)lKa=120,&ᐭ%&>?°(x)=x-S)EFG=4HI%&0°(%o)=5.1666,0()=4.94423,0(%,)=4.9324415஺13,2ᵨNewtoncx"-a=0,efg᪗'Ḅ%&>?)jglim!)஺/0(1)ᵫx"—a=0,3/(x)=x"—a=0,f'(x)=nx"-'.<=%&>?0!)&ᐭ᦮ᳮ0᪗Ḅ%&>?஺4+1=x*f'M[BInJn

34ᵫᳮ2.ᳮ3.50=஽+T,60(x)=X!1&ᐭZ?i,2!rwᨬᓄ0ᐭ஺2/(%)(2)ᡠ|¡01¢£¤■=-lim'”=lim-=4Z4,§¨0-©-4[GxJ=ª2/(x-)f(x)=xn-a,/)(x*)=஻(T¬஺/஻(£)="(“—1)(®”[&ᐭZ?ᓽ5g614.3/(°)ᐹᨵ▤²³eᦪ,/(x*)=OJ'(x*)#0,¡%&>?X=_______(xj_____¶▤ᦈ¸Ḅ஺xᑖ᪆0ºc»⚪ᑁ¾ᦟᩞÁḄ⌱ÃÄᑖ)ὃÆÇÈÉÊ⌕g஺ᦑÍÎfÏ⚪-.)ᨵᐶÑḄ\Ò5ÓI¡)ÔÕ0/■(%+/■(%))ᙠ஽×ÈTarlorÚÛᑮ▤)Ý>?Þß\Kàá஽)g᩽▲limä,åXK஺Z!X

356/7ឋ,-9Ḅ:;/!»æḄÒÏ⌕g(1)çgᔜéᔣëᦪí▣ᦪ஺(2)çgïðñᩩᦪ஺(3)óôÇ\õöḄí▣ᑖ/ᡂLUú?jó/ûü஺»æ2ýþḄ×>?প▣ḄᔜᦪM||=maxMJ,MmaxJ6Jmax(TA)஺11“8">1'1111,114ᨴi=lফᔣ!ḄᔜᦪN=maxkᧇflx1111001m4n111,1i=l(3))*ᦪ▣+,-▣./01234ᦪ஺9:;<⚪>᪆7x+x-x-3t231.ᵨBCDEF>GឋIJK2%+4%+2O=1-x+P2+3%3=21f7>Rᐸᑏᡂ▣VW+2,X,ᐸYZ▣[\]2^ᣚᓄ+᝞b(71-13ஹ‘1-11-2ஹ1-1-3-2VW242,Rᐸjkl.m>1=>2421=>0685ஹe1132;J1-13o஺஺pq33%eᓰe3ᓰ=2.,,kIJKḄs⚪t^+>u6Xo8X=5>wxz(0.6787,-0.64291,1.1071)""-0.0022'0.4ஹ2.z{GឋIJK|}~>10.781251.3816ஹ3.9965056257.4178,x*=(1.92730,-0.698496,0.900432)'஺

36(1)ᵨBCDEF>lGឋIJKo(2)ᵨᑡᐗDEF>GឋIJK஺ᑖ᪆:⚪ᑡᐭ⚪RᙠᨬḄJz>஺44=(%).eব0,eBCDEFwᑮ,ᐸ((2)(2)ஹa22…ain:A"=..............ফফa)nn(1)¢4+,-▣ᑣAব¤+,-▣;(2)¢A+,¥ᓰ¦▣ᑣAফ¤+,¥ᓰ¦▣஺(I)(1)¨⌕.বᓽ«¬+=J"ᵫUyUjiUijUijnii\uijCl[j(I)Cl\ja\\A+,-▣ᑣWᓄ+(1)প<|)(l>(1)Uj\(t)0)(I)ফaji-------j\=ciji--------------(^a\i=Q[-m^au=Qᡝa\\a\\µ஺¶ᳮ«(2)o(21(414.ᨵIJKi=6,ºR*ᦪ▣ᑖ>ᡂe»ᓫ½b9¥▣e»93J2,¥▣¾¿oᓽ4=À஺ᯠᵨÂḄᑖ>>lIJK஺(21(1W11H\1U13>RAᑏᡂLUḄVWᓽu32=/,1,ᑭᵨ▣ḄÇFU22UJ22)ஹ/31132Uzg1_o——1.3333w"=/3l=5'Wll=2>஻12=஻13=1'/=5'"22=5'஻23=/1/33=53221rᡠÉA«ᑏᡂ:132122,yy«4,|b☢>lIJKᐜ>ᓽ:,,>w:PJ->ux=y,ᓽ:

3771]/x.'*Ï4>wX=Ð1,1,1ÑÒ஺7272X=423/UJJ2I/5প5.ºÓᑮ▣AḄCroutᑖ>A=LUḄÖWᐸL+b9¥▣U+ᓫ½9¥▣஺ᑖ᪆×3:⚪ᑁÙ+ᦟᩞḄ⌱ÝÞᑖὃºàáâ⌕m஺ᦑ¨z<⚪äåᨵᐶçḄ¶è«é\êël.,/=1,2..-H;M,.^,j=2•••«,,ᡠÉlj=aik-l](k-1\l=aI3=k,k+1…n,u=y~ïj=%+i…”஺=1IkNE>6.L+ò᜻ôb9¥▣Ð1Ñᑡ⌲ö÷ᐭm>LX=/ḄÖWoÐ2Ñøm>J◤⌕úûöÇ◀F?XiÐ1Ñ,ᐸ//o(i=l,2n)oþL=+%5;fA-1fklkrXj/OQ\>øIJK«Éwᑮ:XiKk=(2,3....n)oXi=-j-l\\kkT◀஺Ð2Ñöᦪ+:1)+1]+“=7.ᵨ᪷ᦪ!▣A$%&'!▣,(ᵨ᪷)A*ᑖA=LEᓽ᝞./0:241-10ஹ/),11112113114113-1021i2222C32142,ᢥ᯿!▣>?@A!-1-15231C32஺3333r34<0024,41b42043447447-⚪)…஺▣$B᦮ᳮEF=2,"=,I223222"2

38,X-xVT13JKz5x=y,ᓽ~T-REX=(1,2,-1,2)2ᓽḄ஺'2-1'6'8.ᵨMN-131-20ᵫ⚪*P!▣Q$RᓰT!▣)ᵫMNPUAḄAUᑖ:2-1-13V,ᢥ᯿!▣>?@A!▣$-241)B*E0=2n15A419540஺2=5'A=-yo=pW=-Xm=5,Y=Z)[=-2,=-i»r2/\2y'6ஹ.☢])ᐜLY=6,ᓽ--%)E84711Y='5'3’45-2%0%“=5)`K)ux=Y.ᓽ:

39'3ஹ1--28Xi45,EX=b5,4,-3,2c)ᓽḄ஺1%2546a3315711<45>9.Uᔣf1=b42-U0c')iM,kl|n஺=10>=l7,=%/2=MLmax|x|=Hr§WM2V?bc11010.UAeR"*"~᜻!▣)ᧇ|R"Ḅᔣfᦪ)'k=MM)R"Ḅᔣfᦪ஺:জ~ᖹcb=|2•••A~᜻!▣$xw0,Ax஺0||x||-1|^||&=>=Ax=x0oঝឋ᪷⊈=1.ii1=1ᙬ஺ঞ||x+y||2|Abx+ycHAx+Ay|¤+|¥|=kb+¦§11¨kk©lᐸ«….4)᯿M§L஺\M7§b=¬kl4®'k஻°⇟²’´µ¦¶?2EkLWWk)¬`·k[᫂L)´µ¦¶¹᩽▲E§g½k¾ᑣMÀḘÂkkkôµᜳEᜐM=M஺12.U[ÆÇc)i¦)lÈk஺bÉMb=r^gx£|aJ=3)Mlk¬x2|aj=3)||A||=^AmaxbA7'Ac.2S1_?VI_2ஹS5-4ஹᐜA7A==,ᵫÏឋÐᦪᱯÒᔣfḄPÓ*P:1-21A-21J1-45Ç

40ττZ—515,ÕÖ¾0×Ø0,EÙ=12Ù=9,ᡠÛ¦,=4=3,|Ô-§4ÜA$%!▣)ᡠÛp(x)=||A||=3o213.UA,Be/T*"ᙳ~᜻!▣)k|⊤ß!▣Ḅàáâᦪ)পk1§lÇফlA'-B'hkIMIMM஺পåE||W§|AæM2ç/ᓽM[$=PIIফ@-51=èé4k||43-8)5$41k¾êkè1஺14.UAeR"ஹ'$%!▣))ÇI22…ÙAḄᱯÒë)=(·+ì+“+î)Ç஺ÜA$%!▣)ᦑᨵA7=A,ᡠÛᨵAZ=A2,11"À»=|)=1ᵫÇI/Ù)…Ù4ḄᱯÒë)ᵫÏឋÐᦪḄPÓ*Pñ)ò)…ò£ḄᱯÒë)(4K+/Ç+…+ᐗ=ᓡõ஺Cl\\Cl\2Cl22AA=[஺ᔊ஺2nf=lᡠÛ/+%;+•••+a=11ù=11ú஺iai2j=lr=l1=1ᓽMii.=(û+ü+“+/y஺15•U",ýᔙMbMMW=%max(A2A)A7)=||^||-max(A7)="ÿ',ᓽMIHWI◀ᓰ

41MIHIWMW%16.AwR"*",ᢥ▣ᦪḄ$%&'()*▣ᦪ஺1=1j=lᑖ᪆./0⚪ᑁ34ᦟᩞ7Ḅ⌱9:ᑖὃ<=>?@⌕B஺ᦑDEFG⚪HIᨵᐶLḄMNOP&'QR©||x||=px||>0>Z[\Z]=||Ax||=g=4x6=x0஺ঝ=abᑘ=᪛ebMHLঞ|k+4=m'+>)1=o+4pಗ+r|=||s+3|u஺(7]0ஹ(100QQAz.{57'}9998'Bᙊ”)“(஺஺ম஺4*(—71oA஺஺p={.|ᓽ=289,1==(5_/7{{474105ஹCond^A\=V4n47=222.6058A"=7ᔆ105149,U074-2105{_=0,=0,4=0.0045,4=222.9955,105149-22H;ு஺஺஻"2=|•=39601஺18.&'1Co஻d4=Co஻d472CondCondA-CondSBo&'1ᵫ$%NCondSA'^4)'1•|AT|=|•|A[H/r[M|=Co஻dA,ᓽ1ᡂ£஺2Cond¥=¦[.e=§-¨|.|e©§1|ª|ᡃ'1=¬-'I•§-11•|=CondSACond஺

42)/7ឋ,-9Ḅ>?)0®ḄMG⌕B1¯°ᵨJacobi¶·¸¹GAUSS-Seidel¶·¸ᑨÀÁᦣឋ஺0®°ÄÅḄÆÇÈÉপJacobi¶·ᐜBÌ=஺4+{/,ÎÏÐ|=0,Î᪷Ò0Ð<1ᦈÁ஺ফGauss-Seidel¶·ᐜBG=£>-4/t/ÎÏ|Ú/=0,Î᪷ÒpG

43¶·ᦈÁ஺&'1✌ᐜ°ᵨJacobi¶·¸üý80=£>TA+U2ᢥ᯿▣þ¸᦮ᳮ᝞:ஹ0000-1,ᡠᑡ:=+01000Jஹ12053/201|-=-12+,+!=஺,#$:%&'ᦪ᪷*ᐸ,-.0/<1,33~3ᦑJacobi78ᦈ:஺☢<ᵨGauss-Seidel78E:0-1ஹG=D-L't/=-1100=00-1*ᑡ:J10J20-I01\AE-G\=0/1=K-K+1=0,#$L4=4=0*&=O10G=1,P00A+1ᦣ஺2ᵫTᦪU▣&WXYZU▣*ᦑᵫZᳮ[\LGauss-Seidel78OZᦈ:஺]Jacobi78ᑣ_OZᡂa*ᢥ᯿1ḄeEfgJacobi78&Pᦣ஺f8-13.kZelm210ᑨoᵨJacobipGauss-Seidel78#qelmḄᦈ:ឋ*sᦈ:*tuvx°=0,0,0',y-.z““—/}YICT?Ḅ#஺ᑖ᪆L⚪ᑡᐭ⚪*ᙠᨬḄlk#஺4.kZelmᑨoᵨJacobipGauss-Seidel78#qelmḄᦈ:ឋ஺#L✌ᐜ<ᵨJacobi78E[\L0-22ஹB=D'SL+U=1-10-1=-10-11:01-2-202-20,

4422-2\AE-B\=1A1=23=0,#$L4=4=4=°*ᯠ஺<1,ᦈ:஺022A<ᵨGauss-Seidel78E:G=SD-L-'uKᵫyO-L¡¢'ᩖ*ᦑ¤ᵨ¥¦8ᐭy#*ᓽ:|2£-G|=|/L£-D-Lf't/|=|D-Lf'/l£D-L-D-L''t/|=|0-ᑗ00--4=|0-஺1ª0-"-”*®0,ᓽ:|D-L-'|.|¯2D-L-t7}|=0>ᵫL|஺-Ó,0*ᡠ±ᨵL¯4஺-+஺}=°஺’1ஹ'22-2ஹᵫLO—=11*¯AD-L-/}=221»Wtᑡ*L21J24A22-2o1=o,#$L4=0*4=4=2,ᓽL¯2Q-L-Uj=%21=2-222-2222Z222ᡠLpG>l,Pᦣ஺5.»\elmf1"¼½}=1*W¾¿XÅ*k#qelmḄJacobi78Ep14almফGauss-Seidel78Eᦈ:ÆaḄtvÈ஺#L✌ᐜ<ᵨJacobi7EL&=஺4+£/=1ÉÊ/°f*"4஺0JᑡL|_=jL=ᑖ_4/=0,#$L4=4=±267,ᡠ⌕Öᦈ:ᑣ<-.L஺Ì=2Í<1,BPL|a|<—o<ᵨGauss-Seidel78ÐLG=SD-L\'U=1Jfo-a}fo-a}[o0)(o4a2)ᑡL\AE-G\=^-SD-Ly'u\=^^Ê2=0*#$L4=°Kᡈ4=41,ᡠ⌕Öᦈ:ᑣ<-.LpG=4a2|

451a06.gØU▣a1aWOÙYZḄ*ÚqÆᵨJacobi78E#elmV2V2ஹ0bAX=bÆÙᦈ:Ḅ஺gØL⌕ÖYZ=ᔜ▤Þßàᙳᜧ0,ᓽLজ|1|1ு0,ঝa=1-1>0,a1a0—1<஻<1,ঞ—a%஺,#$LOè<"+,/ᡠé:11a1aOY,”Y0a10-a00-a0<ᵨJacobi78Ð:5஺=/TL+U=-a0-a-a0-a0-a00-a020ᑡLplE-8o|==2ëO/=0,#$:4=0,ᡈ%=ì஻*aQ0a2Pí=\a\<1*î⚪ᡂa஺1a117.gØU▣a1aWOÙYZḄ*]Jacobi78E±Wߟ—0,©=l-a2>0*aaa1=2a3-3a2+l=2«2(a-l)+(l-a)(«4-l)=(a-l)2(2a+l)>0,#$L——/ᡠéL——<஻<1஺22-a0-a-a<ᵨJacobi78ÐL&=QTL+U=-a-a0-a0-a-a02aᑡL|/£-/|=a2a(2—+Q4—Q2)=(4—4)~(%—2a)=0#$:aa2ᡠ⌕Öᦈ:ô-.Lh&<1,ᓽLᔣ

46ஹ0}0io.4÷2,gØøAJ0,ùW4=11Æ*limA/_úᙠ஺ᦇO»816J2)2>#:᪷üé᩽▲úᙠḄᐙ⌕ᩩᩭᐸᙠឋ஺(1)ᑡWE-4|=!p#Aj=gমlpd\20✌ᐜoᵨJacobiLMN8஺ᑐstan’0Cl\i6ZH10ஹv஺21a210Cl11)Ia22£12.2ᑡ!y£-z{=|_~2=0,D:᜛#99=a21஺11஻22A஺2200—qoᵨGauss-SeidelLMN:G=(D-Ly'u=00a\2a2\0a2200~a2la\\a22a\\a\2\^21a\\00)0a\Ia22)12|Aᑡ!|—G|=஺1௃஺22=o,D!4=0,4=4ᔳᡠy4௃2%1“110220

47!p#G9=1XWXᦈ*1WX;ᦣ஺12.\234_o251_05v=o0ᑨᵨJacobiGauss-Seidel..X20-0.5LMDE234Ḅᦈ*ឋᦈ*_LMᦈ*¡ᑖ᪆!¤¥¦⚪ᑁ©ªᦟᩞḄ⌱¯°ᑖὃ0²³´⌕µ஺ᦑ¶\]·⚪¸ᨵᐶ»ḄW¼½C¾c!¿ÀE23ªÁÂᓰÄe▣ᵫᳮ!0஺41X23SORLMᦈ*É஺Êtᦈ*Ë஺13.ÍCGauss-SeidelLMNḄLMe▣G=#OUÏÐᨵvÑᱯÓÔÕ¥Ö஺C!ᵫ×ឋMᦪḄÙ!Ú=44…%Ëܪ!W=|#஺-ÝÞß=0à!g-L9ârO,ᡠy|u|=o,Ëܪuª{äÂe▣ᡠy!@=4æ…çÏÐᨵvѪÖ஺14.è234#2?Z9éê#ëÁ³ìX#°9,ᵨLMï—ð=ñò9vë#4Þò9—69µDE234X#19ëḄôÔö÷LMïᦈ*Z#29஺ô´ÔXᦈ*øùᨬ¡D!ᵫû4=#j᪷ý/+19!=#l-£yx"᯿x""=+/,MAAḄᱯ᪷ᑣ6Ḅᱯ᪷1—!τ.A.2ஹ2..%&ᑡ—(==)—2--1=0,,-4=1,4=3,I1X-1ᡠ!8Ḅᱯ31-3,41-3ᗂ⌕7ᦈ9ᑣB;<=᜛8=max{|l—D,|1—3EF1,,GHI!KDFL,-0FyF2஺O|l-3ty|Fl32ᵫRᳮGUVᦈ9WXUY஺|1-D<1ᵫ,᪆[\Ḅ]7_᜛5=max{|l-a|133஺

48,ᨬVcdᙶ᪗ᓽ30-1=1-জ,-ᑓ=,ᦈ9ᨬY஺2

49@AB⚪jklk3ᑖᐳ30ᑖ1.ᵨpqr4+1stu/'=X3-/%1=0Ḅ᪷⌕ypqzᑡ{|ᐹᨵtᦈ9ᑣ=ᓽ஺2.yᵨrSOR,ឋtuI=8஺ᩩRᦣ஺3.A2=M1°1⌕yliM=0,ᑣa____________m0,0.52J—4.{Ḅ᪵ᩩ3ᦪsxᙠ[a,{ᐹᨵ¡ᑮ▤Ḅ¤¥¦ᦪ஺1,a~]15.A=§஺ᩩA!ᑖ,¨ᐸªLᐹᨵ¬ᐗḄ¯°▣5______________6.²-³ᙊ┵Ḅ¶ᙊ<=ᔆ*=3.150,¹º=7.84,ᓫ½cm¾¿À*=3.14஺ÁᵨÂ3ÃÄᙊ┵ÅÆÇ=1ÀᡝÉᑣvḄËÌ▲37.ÎsÆÏ£4=2,Ñ4஽=0,£Ó$=1ᑣ*=0k=0k=0k=03Ö×ᐹᨵqᦪØX஺8.ᔣÚX=5%2Û3'ᑣ|)1|+D+|2%3|Ü-ÝᔣÚᦪRGRRGß{+3%|+|à|ÜÝᔣÚᦪRGRRGáÃÄ⚪1.¯☢Ḅᦪä¿å•Âç⚗éᵨNewton3ïRðÂç⚗ḄᦪñsòðÂç⚗஺-2-10123-5111725p")2.ᵨᨬVáórsÂô᝞y=a+bx2Ḅö÷yøù¯ᑡᦪäúᔠ

5019253138441932.34973.397.8y11111CDi3.éïRᦪpx,᜛xypqý+iþÿḄᑡ{x}▤ᦈᑮপ=0Ḅ᪷X*ok4.!ឋ#$%&y(eߟl,y“—by“+(+136+1,/“4&58H—17&8%9#▤Ḅ&5஻=-178%9▤Ḅ஺21Xi5.=8>?1312@ABᦪD▣ᑖGᡂIJᓫLMND▣OIJPNX21112210_%4D▣QR&ᓽ4=T஺ᯠVᵨXḄᑖGGY8>?஺1aa*06.Z[8>?4a1°%1@\]GY8>?ḄJacobibc%OGauss-seidelb஺“UI0c%ḄᦈḄᐙ⌕ᩩk஺7.=X*8>/1X,=0Ḅlm᪷஻?ு2,Newtonbc%uv!ឋᦈ&wᵨbcxyXk+\K./1X*,஺஺ᑣ{|ᑮ#▤}&\]஺

51DEὃB-GHI⚪/᪆஻=0,1,…&20>1C,#include#includevoidmain()doubleIA[21],IB[21];inti;IA[0]=0.18232155,IB[20]=0.0087301587;//ᑭᵨ⌴xy(A),IAfor(i=l;i<=21;i++)(IA[i]=(-5.0)*IA[i-l]+1.0/i;)//ᑭᵨ⌴xy(B),IBfor(i=20;i>=1;i—)(IB[i-l]=-(IB[i]/5.0)+l/(5.0*i);)஻]printf("I⚪

52

53n\tI(A)\t\t\t\tn\tI(B)

54");for(i=0;i<21;i++){printf("%d\t%-18.10f\t\t%d\t%-18.10f

55",i,IA[i],i,IB[i]);:

56*D:\progra>\Debug\progra*l.exe*B-|q|x--⚪▲nInI00.182321550000.182321556810.088392250010.088392216020.058038750020.058038919830.043139583330.043138734140.034302083340.034306329650.028489583350.028468352260.024218750060.024324905570.021763392970.021232615280.016183035780.018836924290.030195932690.016926489910-0.0509796628100.0153675505110.3458074050110.014071338312-1.6457036916120.0129766419138.3054415350130.012039867614-41.4557791036140.011229233515207.3455621849150.010520499116-1036.6653109244160.0098975045175183.3853781514170.009336006718-25916.8713352015180.008875522119129584.4093075865190.008253968320-647921.9965379322200.0087301587|Pressanykeytocontinue.zJ#\ᦪ⊤012345-7-452665128/X.@ᵨLagrange%IJ⚗yᵫY/10.5,Ḅ஺>(C)#include#includevoidmain()floatx[6]={0,1,2,3,4,5},y[6]={-7,-4,5,26,65,128),1[6]={1,1,1,14,1);floata=0.5,s=0.0;inti,j;for(i=0;iv=5;i++){for(j=0;j<=5;j++)(if(i!=j)(//²ᦪl[i]=l[i]*(a-xU])/(x[i]-x|j]);஻⚗ys+=HiJ*yliJ;,஻]

57printf("#⚪

58");printf(HTheresultis%6.3f

59'\s);:ᵨº»xyḄ⌴ᓄxyRᑖ⌕½¾¿ÀÁgxlO-5஺>(C)#include#include஻ÃRᦪdoublefunc(doublex)(doublet;t=4.0/(l+x*x);returnt;voidmain()(inta=O,b=l,k=l,i,j;doubleT[lOOJ={O},s;஻º»xyḄ⌴ᓄxyT[0]=(b-a)*1.0/2.0*(func(a)+func(b));do{s=0;for(i=0;i0.000005);/Å]printf("⚪

60");for(j=0;j

61",pow(2,j),T|jJ)Æ)printf("ÇȽ¾⌕ḄRᑖ⊤|yḄ=%10.7f

62",TLk-lJ);:

63XH,⌕½¾¿ÀÁ1x10-5஺ÉᵨÊËÌ1RomberglÍxyRᑖ2>(C)#include#includevoidmain()doubleT[4]={3.0,3.1,3.1311765,3.1389885},S[3],C[2],R;inti;஻Î⚪ÏᑮTḄprintf("É⚪

64");for(i=0;i<4;i++)printf("T[%.f]=%.7f

65",pow(2,i),T[i])Æfor(i=0;i<3;i++)S[i]=4.0*T[i+l]/3-T[i]/3.0;printf(,'S[%.f]=%.7f

66,,,pow(2,i),S[i]);for(i=0;i<2;i++)C[i]=16.0*S[i+l]/15-S[i]/15.0;printf(,,C[%.f]=%.7f

67,,,pow(2,i),C[i]);R=6410*C[l]/63-C[0]/63.0;"ÐÇȽ¾⌕ḄRᑖ⊤|yḄR=":

68=ÑÒ⚪.'XÓh=O.i,@ᵨEuler8%ஹV⌨ḄEuler8%I{0)=1Oº»xyG஺>(C)#include#includevoidmain()(doubleX,Yl[6]={1.0},Y2[6]={1.0},Y3[6]={1.0},Y4[6]={1.0};inti;for(i=0;i<5;i++)(X=0.1*i;Yl[i+l]=0.9*Y1[i]+0.1*X+0.1;Y2[i+l]=(Y2[i]+0.1*X+0.11)/l.l;Y3[i+l]=(0.95*Y3[i]+0.1*X+0.105)/1.05;Y4[i]=X+exp(-1.0*X);)X=0.1*i;Y4[i]=X+exp(-1.0*X);஻]printf("⚪

69");printf("Xn\t\tEuler8%\tV⌨Euler8%\tº»xy\tÖ×G

70”)Æfor(i=0;i<6;i++)(printf(n%.lf\t%.6f\t%.6At%.6f\t%.6f

71H,0.1*i,Yl[i],Y2[i],Y3[i],Y4[i]);:

72\prograB\Debug\prograB5.exe*BEISI⚪▲Xn1iuleÙ8%V⌨Eulei*8%Ú»xyÖ×Gߟ0.01.0000001.0000001.0000001.0000000.11.0000001.0090911.0047621.00483?0.21.0100001.0264461.0185941.0187310.31.0290001.0513151.0406331.0408180.41.0561001.0830131.0700961.0703200.51.0904901.1209211.1062781.106531Pressanykeytocontinue#JÛᵨNewton%Mᑡ8>Ḅ᪷&Ö×ᑮÉLᨵᦔᦪÞ஺(1)/(1)=/I3ßI1=஺ᙠß0=2▬Ḅ᪷Æ(2)/(])=/I31I6*+2=0ᙠâ0=1▬Ḅ᪷஺>(C)#include#includevoidmain()(inti=l,Nl,N2;doubleXl[100],X2[100];Xl[0]=X2[0]=2.0;஻ãᓫbcdo(Xl[i]=pow(3.0*X1,1.0/3.0);Nl=i;i++;}while(fabs(X1[i-1]-X1[i-2])>0.0005);஻äåbci=lÆdo(X2[i]=X2[i-l]-(X2[i-l]*X2[i-l]*X2[i-l]-3*X2[i-l]-l)/(3*X2[i-l]*X2[i-l]-3);N2=i;i++Æ}while(fabs(X2[i-1]-X2[i-2])>0.0005);஻]printf("Û⚪

73“);printf("পãᓫbc%

74");for(i=0;i<=N1;i++)(printf(u%10.7f

75H,Xl[i]);printf("ᑭᵨãᓫbc%ÇÈᨵᦔᦪÞḄ8>Ḅ᪷x=%6.3f

76H,Xl[Nl-l]);primf("পNewton%

77”)Æfor(i=0;i<=N2;i++)

78printf("%10.7f

79",X2[i]);}printf("ᑭᵨäå%ÇÈᨵᦔᦪÞḄ8>Ḅ᪷x=%6.3f

80",X2[N2-l]);)<-0.00222Yr,1f0.4)æ.\!ឋ8>?]on-Iᑘ6Z[è×G:nU.7/olI9ZSjU1,=1.JoIO5056254TJ17.4178,ஹ3.996x*=(1.92730,-0.698496,0.900432)&(1)ᵨéêëì%GY!ឋ8>?Æ(2)ᵨᑡíᐗïëì%G!ឋ8>?஺>(MATLAB>)clear;clc;D=zeros(3,4)ÆE=zeros(3,4)ÆA=[-0.00222;10.781250;3.9965.56254];B=l0.41.38167.4178;C=[ABJD(1,:)=C(1,:);E(1,:)=C(1,:);fori=2:3forj=1:4D(ij)=C(i,j)+C(l,j)*(-l)*C(i,l)/C(l,l)endendE(2,:)=D(2,:);forj=2:4E(3,j)=D(3,j)+D(2,j)*(-l)*D(3,2)/D(2,2);end

81B1=E(:,4);x3=vpa(Bl(3)/E(3,3),8);x2=vpa((B1(2)-E(2,3)*x3)/E(2,2),8);xl=vpa((B1(1)-E(1,3)*x3-E(1,2)*x2)/E(1,1),8);x=[xlx2x3]ᵨᑡíᐗïëì%G!ឋ8>?GḄ8>Ḅ᪷v:x=[1.9273000,-.69849600,.90042330]<430ஹ24öᵨSORbc%G8>?34-130஺8>?ḄÖ×GvX*=3,4,-5ஹX21°-14-24J>(C)#include#includevoidmain()doublex1[6]={1.0},x2[6]={1.0},x3[6]={1.0};doublew[2]={1.0,1.25};inti,j;printf("ö⚪

82")for(i=0;i<2;i++)printf("bcᦪkw=%f

83n,w[i]);printf("\txI(k)\t\tx2(k)\t\tx3(k)

84n);for(j=lj<6;j++)x1[j]=x1[j-1]+w[i]*(244*x1[j-1]-3*x2[j1])/4.0;x2fj]=x2[j-l]+w[i]*(30-3*xl|jl-4*x2[j-l]+x3[j-ll)/4.0;x3[j]=x3[j-l]+w[i]*(-24+x2|j]-4*x3[j-l])/4.0;printf(u%d\t%.7f\t%.7f\t%.7^n"j,xl[jLx2[jLx3[j]);:

85c)*D:\progra*\Debug\progra>8.exe*-÷Xö⚪▲bcᦪkw=l.000000xlx2x315.25000003.8125000-5.046875023.14062503.8828125-5.029296933.08789063.9267578-5.018310543.05493163.9542236-5.011444153.03433233.9713898-5.0071526bcᦪk“=1.250000xlx2x316.31250003.5195313-6.650146522.62231453.9585266-4.600423833.13330274.0102646-5.096686342.95705124.0074838-4.973489?53.00372114.0029250-5.0057135Pressanykeytocontinue

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭