数学重难点必刷题:平面向量含详解

数学重难点必刷题:平面向量含详解

ID:83481251

大小:7.16 MB

页数:68页

时间:2023-06-28

上传者:灯火阑珊2019
数学重难点必刷题:平面向量含详解_第1页
数学重难点必刷题:平面向量含详解_第2页
数学重难点必刷题:平面向量含详解_第3页
数学重难点必刷题:平面向量含详解_第4页
数学重难点必刷题:平面向量含详解_第5页
数学重难点必刷题:平面向量含详解_第6页
数学重难点必刷题:平面向量含详解_第7页
数学重难点必刷题:平面向量含详解_第8页
数学重难点必刷题:平面向量含详解_第9页
数学重难点必刷题:平面向量含详解_第10页
资源描述:

《数学重难点必刷题:平面向量含详解》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

ᦪ☊:☢ᔣஹᓫ⌱⚪1.☢ᔣ5|==2,2c-a.c-^=0,ᑣ51Ḅᨬᜧ%&517A.-B.2C.—D.4442../ᦪ4414+4+4=3,PஹP2,ᓃ56஺&ᙊ9Ḅᓫ:ᙊ;Ḅ3<=>4?+4@+4A=஺.BM5ᙊ஺ᡠᙠ☢;FG=ᑣH@|+4IẄKLẑ|ḄᨬN%5A.2B.3C.2ᚗD.3O—•3—.3.0ஹEஹRᑖT5DABCḄUVBCஹC4ஹA6;Ḅ=>AE=—AC,4AF=-AB,XYZI,3|AB|cosB|AC|cosC?(BDsinBADcos_._._._.|£F|/ஹdefT)᪻Q3nlᑣk=()A.1B.2C.aD.m23224.a="=1,a-b=^,c=,d=("/஻)(m,qᙠr,h,stFGuᦪv%xyz712Tឤᡂ}ᑣuᦪTḄ~%&()A.oo,-V3+V2JB.+V^,+oo)C.^—00,5/3—V2JD.,+ooj5.?

1jr&./±Ḅ5()4A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)226.²³/¡´ᙊG¶?+q=lᑗt=R¡ᙊG¶d+y2=16»t=AB,ᙊ஺2ᙠ=A3ᜐḄᑗ³»t=Q஺&ᙶ᪗¿=ᑣAOPQḄ☢ÂḄᨬᜧ%&()A.2ÃB.2C.6D.17.᝞ÅᙠACMB=P5³ÆÇA3ஹA஺ḄÈɳᡠᡂḄ▢ËÌÍᑁ(ÏVÐ)ḄFG=>ᔊÒᑣᙠ²¯ᙶ᪗☢;uᦪs(1,y)ᡠ⊤ḄÌÍᙠ²³Ó=3ḄÔdÕÖᑖḄ☢Â5()79A.—B.—C.4D.xØ228.஺5AABCᑁ=>Ù+Ú+¢=0=MᙠAOBCᑁ(xÏVÐ)BR0=/lÜ+஻/ᑣ1+2஻Ḅ~%5()A..B.(1,2)C.(|,1)9.Ý஺¶஺2)2+஺-2)2=2,஺&ᙶ᪗¿=OT&ÝCḄᩩᑗ³=P&ÝC;=>X=4X+஻ß(ᐸáâ/Bᐵt4஻Ḅãä9å=/qᙠ?xḄæᑣuᦪrḄ~%&()A.[6-2,0)B.(ᵫ-2,0)C.[73-3,0)D.(^3-3,0)10.ᐳ☢ᔣa,5é=4+1=2>§Bsê<±ëḄᔣ5,|3+ì(feR)ḄᨬN%&4Xᑣï5ðᓄò4☢Ḅᨬᜧ%&()

211.ᙠA4BCBCCA=CAAB\BA+BC\=2,>¡ᑣó.ÜḄ~%5()2ஹY2ஹr2"A.[-2,1)B.—,1C.—2,—D.-2,—L3)L3jL3j12.ᙠ/?⇧CA=4,CB=3,MN5õVAB;Ḅ?<ö=>MN=2,ᑣ@•@Ḅ~%&11948J4453,A.[2,—]B.[4,6]C.D.——225513.ᔣø:¡Ḅᜳ¯&ᐰ|û|=1,|¡|=üB;Iø+þ¡3ø+4þḄᜳ¯&┦ᑣᦪ2ḄA.B.^^,-V3U-V3,^i^C.-8,Z^U,+8D.—8,u"Ub,+814.᝞'ᡠ)*+,ᙊC:?+y2=1Ḅ2ஹ4ᯖ6ᑖ89&;26M=CḄᯖ6>?ᔠᑖ8ABM&MF2ᑮP,Q,GHI=|KR,ἌK=|ộD,ᙊCOP6ABMDᑮN,QD='iQM+^QN,ᑣ|PN|+|QN|=()15.*+ᔣV£XYZ[\a\=13,\b\=\,\a-5b\^l2,ᑣ\ᙠZOḄᢗ_B`Ḅ1515A.[0.—]B.[0.—]C.[ߟ,1]D.[ߟ,1]1313131316.*+,ᙊf+y2=1Ḅᯖ69FiஹF,ᙠBgA1A2OhP6M,iMjᚖlm24A|A2Ḅlno,ᙊmPᑣGHIpᵯr0ḄM6Ḅᭆ᳛9A.ᙠB.uC.vD.i3332

3wஹx⌱⚪17.᝞'{|}A8CDAE=2AB(A€R),P9~A9ᙊஹAB9ḄᑖPᙊOḄhP6ᔣV=x+y/+)Ḅᨬ91ᑣX2()A.4+1B.6C.3D.2+73218.mḄ45஺ᐸ᜜9஺?9G,ᚖ9“ᑣᑡ{Ḅ()..112A.AOAB=-AB2B.OAOB^OAOC^OBOCC.i6GḄln/oABஹACmEஹF,'-MB-AF=/JAC,ᑣ:+—=3A஻ABACDAH|-7-p|ᐳnABcosBACcosC19.¡¢£¤ᔣVḄP¥¦§&ঞ5=BH,sin(@,5),ᑣᐵm¡¢ᔣVOª¦§Ḅ~«ឤᡂ®Ḅᨵ()A.2(°r8)5)=(±²)ঞ5B.a®b=h®aC,(«+^)®c=(a0c)+(^0c)D.M=(X1,yJ,b=^x,y),ᑣ஻(8)B=OᨴP/µ22uuuuuuuuaii20.*+6஺948஺ᡠᙠ¶☢ᑁP6¹A0+208+30C=0,ᑣᑡ⌱⚗{

4ḄuuuiuiH3uumA.AO=-AB+-AC24B.lnAO¾iBC¿Ḅ«6C.:S^=3:2AOC|UUHIuuu,wg,|Utr,D.À04=|஺஺|=1,¹03_100ᑣ|஺q=.21.᝞'*+6EABC஺Ḅ¿A8Ḅ«6ÄneN*9¿BCOḄPᑡ6ÈÉ4Äo80mÊ6&,஻6ᑁYZ@=4Ì.@7-22஺,,+3pÎᐸ«ᦪᑡÏ4Ð✌⚗9IḄ{⚗ᦪᑡS,ᦪᑡÏa,,ÐḄÕ஻⚗Öᑣᑡ{ḄA.%=13B.ᦪᑡm+3ÐØÙᦪᑡC.=4/1-3D.S=2',+'-n-2n22.*+Úᔠ”=Ïx,y|y=/xÐ,mV%,y€MᨴÞ,ᨴ^஻,GH%஽+%à=°ᡂ®ᑣâÚᔠ”“ãᚖ6Ú”.Ìᑡ¤Úᔠ[¾=Ïäᑘ'=᮱+1Ð;஻2=Ïx,yè=^/77TÐêM3=Ï%'À'="è%=Ïxy|y=sinx+lÐ.ᐸ«“ãᚖ6Ú”ÚᔠḄ9A.M|B.MC.%D.M2423.ᙠRtAABC«COï¿ABOḄð᝞'ᑣᑡØñᡂ®ḄA.|AC|2=AC-ABB.|BC|2=2ò•ôxIõC.|AB|2=AC-CD

5öஹ÷¡⚪24.*+|ø1=1ù1=1,úᙠcR,GH஻zI=஻ù+ýᜳ960°¹ÿ+—஻+=g,ᑣḄᨬ.25.☢ᔣ£,bc<W="=l"Z•&=%=1_”ு0c-d-0'*☢ᔣs=xa+yBx,y>012V=1,ᑣ+2c|+77|Ḅᨬ9.26.AABCḄ᜜>ᙊᙊ@O,IA8|=6,|AC|=8,=஺+/ⅅa,/?eR,*sin?A-Qa+#-gfPᦪᨵᨬ"ᑣSᦪ"ḄTV9.27.☢ᔣ£,h,""=M=H=a+b+c=1,xa+yb+zc=0.X,y,z>01x+y+z=1,ᑣ/+V+z?ḄTV9.28.᝞]"ᙊ^WḄ_☢`aI,b2,☢MNFE9fg☢"hG"5ᑖk9ᙊlME"Ḅmh"஻ᙠolNQpqrN,G,H,G,G1ᙠ2☢MNFEḄst"uv☢wG-N“7y"G-EH-NḄᜧᑖka,᜛"ᑣtana—m6ḄTV.29.ᓫᔣI"1Ḅᜳw120°,▨+=6€□"ᑣ□7ḄTV9.27r30.ABC஺Ḅ☢96"ZBAD=—,£BCḄmh.*஺EpḄ7h"1⊟=/1+|"”ẆḄᨬ.

6ii7r1r1r31.ᔣ"b>I"1=1c'|=1,\b\=2,Z=l"ᑣc+^a+5IC-஺|ḄTV9.32.AABCm"A8=3,AC=1,1+31—|2eRḄᨬ⁠"6P78AB9:;<=,ᑣ•Ḅᨬ9.33.᝞]"ᙠ¡ABCDm"EABḄmh"P9¤Aᙊ@"AB`aḄᙊlpḄ¥¦7h"§ⅅ=4©+஻"ᑣ஻2—ªḄᨬ.34.«ᱥC:/=4yḄᯖh"¯ᡝ±²/³«ᱥrAஹ8µh"1AF^A2FB¶·¸¹ᦪ.¤Aᑗh±«ᱥCḄᑗ³²y=TrMh,ᑣḄ¼½.¾¿ᵨÁ2ÂÃ⊤Å.335.᝞]"ᙠAA3Cm"Æ,Çᑖk5C,C4,A3pḄh"1CD=È5C,EC^-AC,4=143.§pAÊËᑁ7hPhËᙠÍp"*237177DP=--DC+ADE,ᑣPᦪ2ḄTV36.ᙠÎ45஺m"BC=3,AC=4,NACB=90°"஺ᙠA3pËÏÐhÑᔠ.Ó¼஺஺ᑮP"ÕÖCP=9.*=ס+—ס׹ᦪ"ᑣ8஺Ḅ¼½

737.D4BC19¼2ḄØw"☢pµÙh஺ஹP=4+4+4Ú4+4+4=114ஹ4ஹ^>0.*ᔊ1,ᑣOA-OBḄᨬᜧ.38.,"ÜÝ9☢ᔣ"14,9ÊÞᚖ²Ḅᓫᔣ"*०4eAᙳᨵE+sḄᨬE-4"ᑣ,+3@q+R-âḄᨬ.39.àr☢²wᙶ᪗åᑁḄ¥¦µh஺æ,ç"¶èéêëḄ7ì''íî"II஺ï=2-ᑁ|+|%-WËsØhA"B,CIIAC1I+II=ABII"ðñòᑡô¾õöজA"B,CØhøùᐳ.ঝA"B,CØhøù᪀ᡂ┦wØw.ঞAB,C᪀ᡂ.টAB,C᪀ᡂ.ᐸᡠᨵḄ.7140.᝞ᡠᙠABC஺AD஻3C,ZABC=~,AB=AD^l<2BC=2,M"3஺Ḅ.#Pஹ஺ᑖ&"'(A3ஹ8*Ḅ+,-ஹMஹ஺ᐳ'ᑣ0•2Ḅᨬᜧ5"41.6☢ᔣ9a,B,c,d:;<|a|=|B|=a-B=2,a-c=8.,=:;ᩩ?Ḅ@A2,\d-c\ḄᨬB5ា"|d-a#d=xa+yb,ᑣx+2yḄᨬᜧ5"

8FஹGH⚪42.6☢ᔣ9᙮":;[OBḄᜳ"┦S=4,V=2,F|=l,YZm]ḄᨬB5"]ᑣ^ᦪfḄ5,ᔣ9•a-Ḅc5e.43.ᙠ6☢FgABCZkAB=BC=2CD=2,ZABC=6Q\ZADC=90°,,ᨔ=£%=o3=&1ᑣ2Aᐰs&+᧕0,஻ு0kḄ¢£ᯖP"ᙊ*@Axm"nNὡP§cᨬᜧ5{Ḅ¨©5"-3.ᑣIkᙊḄ«¬᳛"wHk,ᙊ*¯ᙠ4,°±+²k•]=00"ᙶ᪗µkY|¶·¸ᑣwLḄ5".47.6☢ᔣ9£,b,2:;Wd=1,pa-c|='.ᑣ3|+2V+ḄᨬB5wÀ{s=.48.ᙠ┦ÁABCFA,B,Cᡠ=Ḅgᑖ&"Bb,c,Y:;2c4⊈3=׫0114+1&18k,ᑣA=w,஺ÁABC᜜ÇᙊḄᙊ¬ᑣ—>—>—>—>cosBAB-AOcosCAC-AO_2sinCÃ22sin3Ã2AOAO

9ftx/3749.ᙠs45஺za4c=60஺AC=2,B3=2QZADᑣAB=#Í=w1Î7—/(XeR)YÔÕᓻ=4,ᑣ×Ḅ5"-------50.᝞ᙠFgABCDNB=60°,AB=3,BC=6,Y________3AD=ABC.ADAB=,ᑣ^ᦪ4Ḅ5",,M,N'(BC*Ḅ2+Y|MN|=1,ᑣDM-DNḄᨬB5".BMN

10ÛὃÝᫀ1.Cூᑖ᪆௃âã#7=(2,0),a=(2cosa,2sina),ae[0,2it\,c=(x,y),ᑣå2.Ḅᨬᜧ5,ᓽåXḄᨬᜧ5ᯠèéê⚪ëᓄ"ᐵîïḄðñy2-ysina+x2-x(cosa+2)+2cosa=0ᨵòḄê⚪ᨬèåxḄᨬ5ᓽ.ூóò௃᪷õ⚪Aâã#5=(2,0),a=(2cosa,2sina)>ae[0,2ö],c=(x,y).ᑣ5l=2xᡠ÷å6஽Ḅᨬᜧ5ᓽåxḄᨬᜧ5ᵫ(2^—Á)•(}—5)=0ü222£”2þ2+£=0ᓽy2-ysina+x2-x(cosa+2)+2cosa=0,ÿᐵḄᨵᡠA=sin?a-4x2+4x(cosa+2)-8cosc20,=cosa(-l28817--17ᡠ=ீ?ᡠ?84___17ᡠḄᨬᜧB?,4ᦑ⌱EC.ூIJ௃LMIJEN⚪ὃQRS☢ᔣVḄᦪVXḄY⚪⚪LM᝞[E(I)ᐜ᪷_⚪`abᔣVḄᙶ᪗e(2)᪷_ᔣVᦪVXḄfghiᐸkle(3)ᑭᵨᔣVᦪVXḄᙶ᪗opqrsVᐵtpeuᫀwI⚓y58⚓

11z4{ᑭᵨᨵᑨ}pᜧs~rᑮsᐵtpᑭᵨᣚᐗqrᐸᨬBᙠ⚪ḄᐵI`ᓄLḄᵨ⚪.2.Bூᑖ᪆௃᪷_ᦪVX08=|a|||0=|OR|=|0|=1spᓽqbᨬB.ூ௃•••ᱏ,ᱏ஺ᙊ£Ḅᓫ¥ᙊ¦Ḅ3§I,f->->.•.|஺=|஺ᔧ|=|஺61=1—>—>—>—>—>—>240[+40£+40__TT->->-2->->->->-2¬="஺0+0MPOP=MOOP+OP22222—>—>->—>T4MP30P3=MOOP/OP3—>ᦑ4®+4MP+4MP3>MO\4oq+402+404+4+4+4=3,2°±²°IM³I஺´ᔠ;s¶ᡂ,ᓽ4®+MPMPḄᨬB3,23ᦑ⌱EBூIJ௃¹⚪º⌕ὃQRᦪVXḄឋ½ὃQRᑖ᪆¾ᳮÀÁᐭÃÄ⚪.3.Dூᑖ᪆௃.■(ABAC)UUUUUU_______,᝞ÅᵫAO=/l----+-=—-ÇBC-AO=0,rᑮBC_LA஺ᵫUAB|cos6I/iCIcosC)DEDA=DEDC'r5E•zÌ?Í{=Îᡃ=z{,rᑮÐJ.ÑᵫADCOSB]DFrÒÒ=0,rᑮÒ1.¬ÓÔEÕr\AD\)uᫀw2⚓y58⚓

12A,E,஺,ÕÖIᐳᙊØÙNA£F=NADF,KNB=NADF,rÚ4Í'6Ü஺,__3_____»2__►=^ABᓽrbEFÝÞ=?/AF=-AB,rAC433BCூ௃E᝞Åᡠß/ACஹm4.An—1AB|AB|cosB|AC|cosC;ᡠ_______~ABAB\-BC|COSB|AC|-|BC|COSC^BCAD^A—+•ABcosBIABcosB|AC|cosCᡠÎJ.¬ADcosBØà\AD\>ᡠ——fBDsmBADcosB஺Ò|•®cosBsin8á•®•BcosB……ெ.+ä{.ᔙ|—R—RᡠæÁçØЕÌ=ЕÎᡠÍ•zÌ?è{==é•êë=z{,ᡠÐj,mÓÔéÕØÐJ.G5,BAA_DFᡠA,Í஺,fÖIᐳᙊᡠNAM=NADR,ÝØìáᡠNB=Z4DEᡠ஽=Z4£FEFAEAFᡠÚAEFsAABC,ᡠ——=---~ACBCABuᫀw3⚓y58⚓

13___3______2___Øយ=—MC,AF=-AB,4332r-êd—ACABr-mA2>/2ᡠ4_3ᡠAC------ABAB~AC332DᡠEF_%LMN8_O~BC~ABFᡠBC~2ᦑ⌱EDூIJ௃Ù⚪ὃQᔣVᚖôõᦪVXḄᐵtÖIᐳᙊḄᑨö³ឋ½ஹ÷øùúûḄᑨö³ឋ½ஹᔣVᐳüöᳮsÇýὃQR¾ᳮÀÁõþgÀÁ⚪.4.Aூᑖ᪆௃spÿߟq+—ឤᡂᓽߟ4+,ᨬᑭᵨ|a-c|+>|a-c+b-^|=\a+b-(c+J)|,'ᓄᓽB+]_(c+Z)|ᨬ-'ᓄ./0஺2Ḅ/ABḄ56M8ᩩ:;<=6NḄ?@ᨬ.BM,NC=ᑮMN1CDFGHIJᔣFLMᨬMN.ூPN௃rS--1Ka=b=1,a"=,᧕Mva,B>=23^OA=a,OB=b,OC=cOD=dA356.MCDP=ஹ7N9f[ᫀ]4⚓_58⚓

14ᑣABᙠᓫeᙊ

15〉BḄᙶ᪗5ᑣᨵᐵ6tᔣ¢£~ᵨᙶ᪗⊤¥¦᪵¢¨©ª«¬ḄᦪC¯8ᔣC¯°I±⚪MᑮN.5.BூN᪆௃ூᑖ᪆௃´⚪µ£MSᨵ3·¸¹জ5=2/+3ᱏ½ঝS=7+27B+2ÀঞS=4a-b+b2-£ᑨÃÄ1Å┯ǽ©Èᑖ᪆ᨵS,-S=S-5=a+b-2a-b=Qa-bR2=\a-b\2>0>ᓽS5ᨬ.S3½-ÉÄ2Å223Ä3ÅÄ4ÅÄ5Å⌲ᑖ᪆ᓽ£M[ᫀ.ூPN௃•••{,yÄi=1,2,3,4,5Åᙳᵫ2Ð83᙮᣸ᑡIᡂS£¨ÔÕᨵ·®S=2a+3b^ঝS=^+2£r+2Ø;@S=^a-b+b-ᦑপ┯Ç;22,•S-S=S-S=a+b22=Ä஺1Å2=|£—"20,s5ᨬ.ᡡ.y2232-Ý2_1hᑣS,m=S3=~t|aIãᐵᦑÄ2Åäå½nÝ£//ᑣ,=53=47n+n2,t|5|ᨵᐵᦑব┯ǽ1Ý|6|>4|2|,ᑣSè=§=4|£|᯿ë84-22_4ì|+|"3>—|íᱥ“ðᦑÄ4Åäå½Ý|5|=2|£|,S=S=81a|2cos0+41a|2=81a|Smin3TTTT...2cos6=l,஺=óᓽZtBḄᜳ.?Ä5Å┯Ç.<ᡠö÷⚪äåḄgÄ2ÅÄ4Åᦑ⌱Bூ6௃⚪ὃ÷⚪ḄøᎷᑨÃt¬ᵨḼûὃ☢ᔣḄᦪüḄᔠ¬ᵨὃýᳮஹᑖ᪆Ḅᔠᵨ⚪.6.Aூᑖ᪆௃ᫀ6⚓58⚓

16P(Xo%)Q(rn,n),ᑭᵨ!Q,A0,8ᐳᙊ'()஺஺+,-Ḅᙊ./ᙊḄ0123(4,5A3Ḅ01,57PḄ8ᙊḄᑗ5:ᔠ;<012=>(%=2%,“=4%,Cᵫ8ᙊḄEᦪ01GᔣIᦪIJḄᙶ᪗⊤NGᔣIḄOPᔠQRSḄ☢JUVGQRឤ=Xᣚ)ZQR[ᦪḄ\]ឋ_'4ᡠ'Ḅᨬᜧc.ூef௃P(x0,%),ᵫAQLAO,BQLBO,>(!Q,A0,8ᐳᙊ>()OQ+,-Ḅᙊ01+(x-£)2+(y-92=WrὶtᙊC:x*2+y2=16,23>(ABḄ01+fwc+ny-\6=0,2A88ᙊ2ᑗ>(7PḄᑗ501++*=1,ᓽ+2%x+4%y-16=0,84ᵫ;,5:ᔠḄᩩ>(=2x0,"=4%,ᵫᙠ8ᙊ>x()=2cos஺%=2sina,0,,஺<2ᓽᨵ஻7=4cosa஻=8sina,UUUUUU1>(OPOQ=tnx+஻y()=16cos2a+16sin2a=16,[}|OP|=48cos2a+4s஻72a=2yh+cos2a,|OQ|=432cos2a+64s2a=472V1+sin2aᓽᨵS®Q^OPUOQ¢in=^&¤IU¤9(§⊟©=—Jl28(1+cos2a)(1+si”)-256=—128(2+sbracos2a)-256=—J32sin"2a=2^2\sin2a|„2\[2,sin2a=±1ᓽa='ᡈ—ᡈ—ᡈ24444SANOḄ☢J(ᨬᜧc2c.ᦑ⌱A-ᫀ7⚓58⚓

17ூª௃]⚪ὃ¬8ᙊGᙊḄ01Ḅᵨὃ¬,5G8ᙊஹ,5ᙊ2ᑗḄᩩ)ZᵨEᦪ01GQRឤ=XᣚUV®f⚪Ḅᐵ°ὃ¬'f±²ᑖ᪆³⚪Ḅ±²⚪.7.Aூᑖ᪆௃ᵫ®ᵫ5´08ZA3ஹA஺Ḅµ¶5ᡠ·ᡂḄ▢º»¼ᑁ¾¿ÀÁÂḄÃÄÅUUUUUUUUḄÆÇ5ÈOP=xOA+yO3ÉஹÊᡠËÌḄÍ=V⊤N4ᩭᯠÐÅ4Í=VÑᡠ⊤NḄ>ǼÒÓ4>Ǽᙠ,5y-x=3ḄÔÕÖ×ᑖḄ☢Jᓽ>.ூef௃᝞ÕÙ_P`.MNH0B,ÚA0Ḅµ¶5“ÚḄµ¶5N,UUUUUUnumUUUMP=ttMNm>0,0

18x<0y>0Å4Í=VÑீåḄ>Ǽ᝞ÕÙÉ▢º×ᑖᡠN,x+jy/஺+AABCḄ:¢ø᪷öMᙠAOBCᑁᑨû4M஺:ᔠ4+2஻ᨬüøMC:ᔠý+2஻ḄcᨬᜧþÍ¿ÀÁᡠ)ÿᓽ.ூ௃஺A4BCᑁ++=6ᡠ0AABCḄ!Mᙠ$OBCᑁ&'()*+,M-0ᔠ/2+2஻ᨬ45/AM=AAB+^AC^^x+=+ᡠ/[=!,஻=’,ᓽ;+2஻=133,M-Cᔠ/2+2஻ᨬᜧ5/AM=ACᡠX=O,4=1,ᓽ4+24=2MᙠNOBCᑁ'()*@ᫀB9⚓D58⚓

19ᡠEFᓽG1+246(1,2)ᡠ⌱BூK௃L⚪ὃOPᔣRᙠSTUVḄWឋYZᱯ\]^_Ḅ`ᵨbcd⚪.9.Aூᑖ᪆௃ᐜᵫj=/1k+(஻—1)mn)opqᑮGIḄᐗuvpwᙠpw'Ij)___________________Ae¥+”{ᨵnqᑮ஻ḄE}ᵫVp=+஻m=i,>qᑮ஻-Ḅᐵ/Ḅ.ூ௃ᵫ□C:(x—2y+(y—2=2,q⊈|m|=2&0T஺ḄᩩᑗWᡠ|p|=75|k"OTCT=QOCOT=\pT^=6,OC-CT=-\CT^=-2=/_¢=/1k+(4—1)mᡠ2=[/1k+£Pu;2k2+2¤(஻_])¦ᐗ+(஻_02§2ᓽ2=6¤2+12/1(஻-1)+8(஻-1)22ªG'ᓄ®q322+6(஻-1)2+4(஻—1)~—1=0,ᙠ¤£{ᨵn□=[6(஻-1)]2-4X3[4(஻-1)2-1>0ᡠ-aoT3+6(஻1)#+4(஻1)212஺q0<஻<1ᑶ@ᫀB10⚓D58⚓

20µOPCT=(/lor+x/OCjcT=AOTCT+/.tOCCT=-2஻=tᡠº-24f<0ᦑ⌱A.ூK௃L⚪ὃOPᔣRḄᦪR¾¿ᐸ`ᵨᐗuvpwÁ᪷ḄᑖÃÄᔠឋÅÆbcd⚪.10.Cூᑖ᪆௃ᐜÇÈᔣR4=(4,0),ᑣᔣRʪᑖËᙠ(4,0)ᙊ!rḄᙊ{ḄÍnÎYÏ,qÐBḄᙶ᪗ᑭᵨOB=BC,qcos®=£uÖᯠØᑭᵨo☢ᔣRḄÚÛÜÝ8rÞ+ß!/?)Ḅᨬ4}%,,4nm=3rsin6,ᯠØq@ᫀᓽ.ூ௃᝞åÇÈᔣRa=(4,0),ᑣᔣR5çᑖËᙠ(4,0)ᙊ!rḄᙊ{ḄÍnÎYÏᐸVè=஺=Ê=3᧕ÐBḄᙶ᪗B(rcos8+4,rsine)MᡠOB=BC,BP(rcos^+4)'+r2sin2^=4r2᦮ᳮqcos©=3/16,ᡠsin®=Jl_cos2e=J^+16°>-2568rV64ñW+ófeR)Ḅᨬ4}4M,1@ᫀB11⚓D58⚓

21pn,a.Aa19/+160—256ᓽ=3rsin஺=3J-------------QQ2÷—9/+160ᡝ256=—9&ñJ+160,256,,ñ=—§/Eᨬᜧ}5/19/+160ᡝ-256<8V64-3ᦑ4☢Ḅᨬᜧ}8ᦑ⌱CூK௃L⚪ú⌕ὃOPo☢ᔣR-o☢ÚÛḄÄᔠÐüᑭᵨᙊḄឋýo☢ᔣRḄÚÛÜÝ⍝ÄᔠឋÅÆḄ⚪ÿ⚪.11.Dூᑖ᪆௃ᵫ•=ᑮ(+)=0ᑭᵨ☢ᔣ!"Ḅ$%&'᪀⌼*+,-BCD4,᪷4m•(+)=0,6*+,-3s49:-;᪵ᙠ&ABOAABC:-Ḅ,DBC.ᐗḄ⊤GHᑭᵨ;᪀⌼JᦪᨬMBC.NḄOPR.ூST௃BC-CA=CA-AB^>CA-(BC-AB)=Q^CA-(,BC+BA)=O,BC,8AVW,X*+,-BCZM,᝞\]^BrCᡠ`a+=bcd•=0nC4,8஺ᡠ*+,-5CQ49:-ijᫀl12⚓n58⚓

22ULI'UlinC4cBD=0,8A+BC=2,ᡠ=2n8O=l,ᙠR/ABOAA,cos/ABO=ᔞnABABZAcBoCs--------2______12p"2cosZABCy-BABC^^ABCr2-cosZABC=-------------1+cosAABCcos2ix=cosZABC•.♦tWNABCீ4v...Xe[-lw],3322112x222ᡠyx+”zᡝ|᱄=~஺kM9Jᦪᦑy/yj,bc⚪⌱D.ூ௃⚪ὃ☢!"Ḅ$%&'ஹ☢ᔣᦪḄOPR⚪ᑭᵨ:-ḄឋஹḄᓣHஹ᪀⌼Jᦪ9T⚪Ḅᐵ.12.CூT᪆௃3C4,CBVxyᙶ᪗U^44,0r,30,3r,!^y=3-8i3ஹ38M\a,3--a\,NQb,3--bR,Ꮇia0¶ᓽᓲ;I+3+A2r-l-V2-cos^>0+5a+3>0/£3஺0'A2-3^=0ᐭ2—3Ho'Tae-8,2^1ru^1^2,73ruÃ,+8r.^⚪Ä⌕ὃ☢ᔣḄᦪÆÇÈᜳHὃ┦ÉÊËJᦪḄOPRὃ§ÌᔣḄÍÎᐵ.⚪Ï£ÐÑÒÓ§ÌᔣḄÔÕᜳÖ×ØÙḄᦪÚHBTCᩭ.ᵫM☢ÒÓ§ÌᔣḄᜳV┦ᑣÝᓄVᦪᜧàájᫀl13⚓n58⚓

23âã1,äåæ§Ìᔣâçᐳéᵫcᑮ;12-3H0.14.AூT᪆௃ê⚪ᑖ᪆^᪷4ëᙊḄÓ'ÕNíᨵ|PN|+|QN|=|-(IDF/+|ò|)=|-4=10.ὃ^éÈᙊ┵ôéÍÎᐵ.15.DூT᪆௃ê⚪ᑖ᪆^ᵫ|"|=13,ᓛ|=1,y-5ᑖ12,0£5v÷=169+25—107v4144,᦮ᳮ____ýಘ5IT஺25,᪷ᑣ/,ᙠ஺Ḅᢗᐸᢗᜧ6=1,ᡠ"1311%ᐸ'ᦑ⌱D.13ὃ-.ᔣ0ᙠ123ᔣ0Ḅ4ᔣḄᢗḄ'5⚪.16.Cூ9᪆௃9.V|A|A2|=2a=4,2c=2Bb=l,EP(xo,yo),•MNFIPF2=90°N,SF1PF2=,'1"/2x2V3xyo=lxtan(900/2),A9yo=MXyo=/Yᐭ[ᙊ]+_=1xo=`aᵫPFrPF<0,NF1PF2N90஺.2fᔠ⚪EᩩijklPF).PF<0ḄM-Ḅᭆ᳛=o-(-∅)/2a=a/4ὃ217.BDூᑖ᪆௃VCOS6T=1(4+l)(sina+l)ENB4P=a᪷ᔣ0yz,,{|+y=1.}'1ysma-x=i%sina+cosa/(&)=""»-1«e[0,-],ᦪᦪᦪᨬzsma+cosa2/(a)min=""-I=`1,949ᓽj.m,n22+12ᫀ14⚓58⚓

24ூ9௃EZ.BAP=aᑣAP=cosaAB+sinaADᵫAC=xDE+yAPjAC=x(AE-A஺)+y(cosaAB+sinaAD)=(xA+ycosa)AB+(ysina-x)ADd+ycosa=1=+ᡠ%ysina-x=lsina-cos஺x---------------------Zsin^+cos«92+1y=-------------------asina+cosasin஺2cosa2+1ᡠ%x+y=—-----------------1-----------------------Asincr+cos

2522-1(2+1)(-^—-+1)+2A1y/3+1ᡠ%/(a)min=/(4)=------U-22-l22^22+l+A2+l94ᡈ2+JLᦑ⌱.BD.ூ-°௃ᐵ²--°.ᙠᜐᳮx+y=(/+D.ina+1)_¶ḄᨬN,ᑭᵨᦪ¹º⚪Ḅᐵ²Xsina+cosa-¼¹½-¾¿À¿ÁÂÃᦪḄ᩽-ᓽᨬ-Å9º⚪Ḅyz0Æᜧǽ⚪.18.ACDூᑖ᪆௃᪷᜜ÊᙠABḄ˹ABḄÌ-ᑭᵨᔣ0Ḅᦪ0ÍḄÎj%ÏÐAÑÒÓᑭᵨᔣ0Ḅᦪ0ÍḄyzÔᑣj%Õ9=□×ᓽ04_LBC,ᙠ2ØÁÙÌ᧕kÚ¹2ÑÒḄᵫ£jᑨB┯ÝÓᑭᵨÁÙÌÞḄÎÞឋyzàá☢ᔣ0ãºᳮÌḄäåj%ÏÐCÑÒÓᑭᵨᔣ0Ḅᦪ0Íyzàᔣ0ᚖçḄᩩij%ᑨèé1ᚖçÅêÐDÑÒ.ூ9௃᝞ìEABÌ-M,ᑣOM_LAB,|AacQsNOAV=|AM|AOABcosNOAB=î(ïcosNOAB)=|AB|J^1]_ðAÑ2Ò;ᫀ16⚓58⚓

26OAOB=OAOCòóOA'OB-OC=0òóOA-CB=0,ᓽOABC,ô2ØÁÙõ஺¹᜜Ê2èᚖçö᝞çÁÁÙABCÌ,÷3çÁ⚔-ᑣ஺ùúACḄÌ-èᚖç.ᦑB┯ÝÓEBCḄÌ-஺ᑣûü+ṹ=4þÿ+=+33ஹ>஻)323஻EEGᐳ'•■+=1,ᓽ35=3,ᦑC;cosC-|BC|+|BC|=O,ABACᓱᡭᚖ'!,#$cos%cosC&ᐳᦑD.ᦑ⌱ACD.ூ*௃,⚪ὃ/0☢ᔣ3ឋ567ᦪ3956ᔣ3ᚖ7ᐳḄᑨ<0☢ᔣ3ᑖ>Ḅ?,<ᳮABᔠD⚪EFGᜧᐵJKLMNᵨᔣ3Ḅឋ567ᦪ3P56ᳮ>ᐳḄᐙᑖR⌕ᩩUV!⌲XYZᑨ<.19.BD[ᫀ]17⚓_58⚓

27ூᑖ᪆௃abA,B,e◤᪷h௃>abAᐘz&ঞ5w=%z}.11§5ww,z¨law®S=|2||a|-|^|sin^2a,b^,ᦑ¯u°w=z±°ឤᡂ²abB,2°=}ᓱ³´§/³Bz8wa=W•}sinz5,¸wᦑ¹°=6ঞ&ឤᡂ²abC,¼£=¾,¿b¨0,z5+^w0c=zl+2w|^|-|c|sinQb,c^,za®cw+^®cj=|A^|•}sinz5,0w+W•}sinz5,w=z1+¯w-|c|sinzÁ.,ᯠÂ+5wÃ1=z¸Ä+z5ÅswHឤᡂ²ab஺]_xw+x%Ç᝞É}PÊ2+42/ஹ2=Ë+Ì-0ᧅ=gᱏ+ÎÏÐ+ᡀwXzÒ஽+x%y=£+ὃு²-2%஽×|R=ᡭRXØÙᑣa®b=|x,%—஽X³ឤᡂ.ᦑ⌱BD.[ᫀ]18⚓_58⚓

28ூ*௃,⚪ὃ/ᔣ3ḄÝ56Þᑣß6K>⚪ḄᐵJAbGE⚪.20.ACDூᑖ᪆௃UUUUUUUUIU᪷h⚪àᩩUᓄáᑮ4Ao=+2AB+3ACpᑨ௃UU8LUUUUUU1᝞ëᡠí஺îïð஺ᡠᙠ0☢ᑁX¿A0+206+30C=0uuuuiuuuUUIUUULULIi—~páAO+2O6—2QA+3OC—3QA+50A=0ᓽAO=2z°B—QAw+3z࠷—OAwuuuiuun3uunᓽ4!=2!+3ãôᡠõAO=—A8+öAC,ᡠõAKḄ²24ᙠïð஺Êà஺î8CḄÊUUUuuuuuuiUUUUUIUUUUUUU1ᵫAO+2OB+3OC=0>pázAO+OC+208+OC=0ᡠõយ=-2!+Áw=—4!ᡠõAOøBClḄÊᡠõB;ᵫ!=-4জpá|ú=4û|¿AC7/OD,ᡠõ——=?—=—,ᡠõOE=—EC,pá£C=—BC,ᡠõXECAC445EC2q-ADxBEsinZAEBᡠõ=V--------------------------ᡠõC²'iAOC±ADxECsinZOECEC22uuuuuuuuuruutuuuuuuᵫA0+20B+30c=0,páQA=2O6+3OCIuun,.uun,»´ýî|஺p=|஺஺|=1,¿03_|_0(?uur2uunuun2ULBHuinuuuuun,páOA=2OB+3OC=403+12O8OC+90c=13,ᡠõᡠõDKḄ.ᦑ⌱ACD.[ᫀ]19⚓_58⚓

29D\EBCூ*௃,⚪þ⌕ὃ/ÿ☢ᔣḄᭆᔣḄឋᔣḄᦪᔣḄḄᵨᐸᔣḄឋᑣ☢ᔣḄᦪḄ!Ḅᐵ#Ḽ%ὃ'(ᳮ*+,.21.ABூᑖ᪆௃ᓄ/0ᑮGj>=%+1—2«„-32.*342%+32•6᪷6ᐳ0ᑮ4832஺“33=0,ᓽa,ᵨ+3=2஺,+32,a=2n+l-3,>?ᑨABC⌱⚗0ᑮᫀ.nூH௃JK.L—2424+32-ᵨ+Ẇᦑ᳛=4஺,ᵨ32%—2஺“+32•Tlmᐳo,ᦑU+V2%-3=0,ᓽ4+1+3=2q+32,%=1,ᦑ/+3=4x2"ஹᦑ஺”=2ᔣ33.4=24—3=13,AZ[;ᦪᑡ^%+3!`aᦪᑡBZ[b““=2e-3,C┯dbs“=4L^—3஻=2"+233஻34,ᦑ஺┯d."1-2ᦑ⌱fAB.ூgh௃⚪ὃ'jᔣᦪᑡḄk⚗ᦪᑡlmᙠὃ'opḄ+,qᓄ+,rᔠᵨ+,.22.BDூᑖ᪆௃ᫀt20⚓v58⚓

30᪷6⚪mwxyzᔠM⊤}Ḅ~ᦪḄmgP4x”X2,ᙠᙠ3CgP',0ᔠ~ᦪᓽᑨA.ூH௃ᵫ⚪mwxyzᔠA7⊤}Ḅ~ᦪḄmgP4᳝,y2,ᙠᙠ3CgP',0OPVOP1-ᙠy=V+iḄpgᙶ᪗40,12ᙠxḄgp,ᡠ“I!“ᚖgz”zᔠbxy=Ḅ¡ᙶ᪗¢£¤g¥¦m§qᙳ*~ᦪᨵªgᡠᙠ“2Ḅmg஺4¬2ᙠw2ᙠ3Cp,0®j.°ᡠw2!“ᚖgz”zᔠbᙠு=²ḄPgᙶ᪗40,12ᙠxḄgPᡠw3!“ᚖgz”zᔠbx´=411¶+1Ḅ¡ᙶ᪗¢£¤g¥¦m§qᙳ*~ᦪᨵªgᡠᡠ!“ᚖgz”zᔠᦑ⌱fBD.ூgh௃⚪·⌕ὃ'¹⚪ḄºᎷḄᑨAx¼½¾Ḅᳮ*ᵨmᙠὃ'opḄᦪo¿+,ᦪoÀ+,ÁyÂÃ⚪.23.ABDூᑖ᪆௃ᵫ☢ᔣḄᦪ0fAC-AB^\AD\\AB\,BA.BC=\BA\\BD\,ÆᔠÇÈÉÈÊḄË̽ᳮ0⌱⚗A,BZ[ᵫ|®Ïយ•ḄÑÒ0⌱⚗C┯dᵫÉÈÊᐰ`0⌱⚗DZ[rᔠ0.ூH௃ᫀt21⚓v58⚓

31fᵫ®•=|យÖ×0$4=|4஺|ØÙᵫË̽ᳮ0AC~=ACAB,ᓽ⌱⚗AZ[ᵫ.ᐗ=|||Ûkos8=|ÜÝÞᵫË̽ᳮ0BC=p.q,ᓽ⌱⚗BZ[ᵫÛ.=ß||àcosQ—NAC0)0,ᓽ⌱⚗C┯dᵫwRtMCDÉRt^ABC,ᡠ|AC|ÝC|=\AB\\CD\,32(⊟.ä)x(ᮞ)ᵫ⌱⚗A,B0CD---------2-------ᓽ⌱⚗DZ[ABᦑ⌱ABD.ூgh௃⚪ὃ'j☢ᔣḄᦪஹÇÈÉÈÊḄË̽ᳮÉÈÊᐰ`Á᫏⚪.24.é2ூᑖ᪆௃ê£==m®+dì==஻k+®0AA',B,B'ᐳá|Z—í=|ᨴH|=g,|à|=gᨬJ|ä|ᨬJ®ðA'ஹ8'ᐵyy¢xñᔠòwᓽlóḄᨬJô.ூH௃ᵫ⚪mAB^OB-OA':•ra=OAr=mAB+OA=(1-m)0A+mOB,b=OB'-nAB+OB=(1+n)OB-nOA,ᦑᨵAA,õ&ᐳᫀt22⚓v58⚓

32•••×ߟØ=|øó=;,ᦑùúIûᵬ|=;ᨬJI®IᨬJ,•••ᨵA'ஹ8'ᐵyy¢xñ||ᨬJð஺ᑮABḄýþG•ÿ=,1124ᦑᫀs.2ூ௃ᐵᵨᔣḄឋᐵᐳឋQ=OA=+,&|2-'=|)1=>!■ᑖ᪆-4ஹB'ᐵ==஻+"ஹ0A."Ḅ%ᐳ,2./0123||ᨬ567ᨬ58ᓽ.25.40ᫀ;23⚓=58⚓

33ூᑖ᪆௃ᑭᵨ?Ḅ@A,ᎷC£=(F*B=(—F஻)3=(஻,L,2=(/,0),1=(0,1),QRᩩT-U^ߟߟXUY1’ᯠ\]^_`⊤b^F+24+F-@,ᓽ-cd.e+44ூgh௃C"=(j,஻==(r,0),c=(0,1)ᵫ⚪o=p=k|=1,cd=0᝞sᡠu“.(Uw+஻2),xy+஻2=]mtᡠu஻=1U(U.+{=|mttᑣᶭ+-12=1=>/ᑐ2e+4'஻+4ᑣs=(஻,v)=x(m,/i)+y(-m,«)=(m(x-y),n(x+y))u=m(x-y\v2w2“4ᡠu——m=4=4ᫀ;24⚓=58⚓

34ᓽ164/2Iᐸc2=a'—1--^——4-Ur-U-Z+4r+4o+2"▣U7|—+—ᓽ+2/U=||=|+|ᡠu+2c|+U4=2a+\FS\+|S£)|2¡¢,S,££¤ᐳ3ᨵ¦+2c|+—2a+1/^,Z)|=,J++4>4¨7^¡&©¡=±23«¬ᑣ|(+24+g-4Ḅᨬ58¯40ᦑᫀ4-^2ூ௃°⚪ὃ²ᔣḄ³ᔠᵨᐵᙠ.¶☢¸¹ᙶ᪗Ḅ?¼u-ᑮᔣIḄᙶ᪗¾¿_`Ḅ@ÀὃÁᑖ᪆ÂÃuÄÅÆÇÂÃÈÉ⚪.,3315ஹ26.(——,—)1616ூᑖ᪆௃ᫀ;25⚓=58⚓

35✌ᐜ7-₹•ÏÐXÑ6ᵨCOSA⊤b^a4ᵫÕᓄ×sin2A•Øs+A-g/,cᔠYÙÚᦪḄឋᑡ¬Ýh¬Ý7-fḄ«8à.ூgh௃ᐜ7á3•âã•ã᝞sᡠbC஺¯åABḄᵫ.஺¯¤¹æABC᜜èᙊḄᙊÑᦑODJ.AB,ᡠuÐ஺.=|,₹05Øì,Ïᓺ•Jîïð=18,pᳮ-|p•|.cosØយ/=|õṹ÷ø2=32.AOAC^UUU1UUUUUU1ᵫ.AO=aAB+0ACீaஹBwR)3-4cosA_______________„2___________a=AO-AB=aAB+/3ABAC=184/+3disA=6sin2AᦑV_______,ᓽ“h-AO-AC=/3AC~+aABAC=326a4w4-3cosAB=8sin2A2ஹ11923A.üÝýᐭsinA.Øfa+Uÿᓄcos?A--r+-IcosA,ᵫ—IvcosAcl,2x2x\,J1,(2⚪cos~A—|—t+cosAᨵᨬ$%,&ᔠ()*ᦪḄឋ./0121323—/+—1(?3ஹ-[5,+3]-1<------8•<1:;—cos~A-7+=>0§4ᨵᨬ$%.ᵫB1<----------<1C2x128F2x1223315-----

36AூUV௃X$⚪Y⌕ὃ\]☢ᔣ`Ḅᦪ`aḄbc;ὃ\ᙊḄefឋ.;ὃ\ghḄij;ὃ\()*ᦪᙠlmnopᨵᨬ$%q⚪ḄrCsᶍ,ὃ\ᓄuvwᓄḄᦪxijgy,zᔠឋ{|,}~⚪.31127-L?2jூᑖ᪆௃ᔣ`Z)bc.Z+B+2ᓫᙊ;ᑮ£=—2,wᓄLᦪᐵ;ᑖ.ூC௃᝞;ᓫᙊ=£,OB^bOC^cOP=a+bOT=a+b+c^᪷ᔣ`yḄ]yᑣM5/஺48¡=஺47P//CO7P=C0ITI.ri.riifrr.τuiinIτminτlUiriτmr.iUir|τuiiuτQq==a+b+c=1,/.\OT\=\OB\=L\BP\=OA=1,m=\OC\=1,JᫀQ27⚓;S58⚓

37IUUDI|ULT||UUT|:NOPBWOPT,ᓽST¤ᔠ;Q4//BP//OC,|OC|=|^|=|OA|,ᡠ¬£=QM+y%+zc=஺,.•.(x-z)஺+y஻=஺,1Z;Bᐳ´:;ᨵx-z=O,y=஺;µ,y,zN஺;x+y+z=l.·=z=Lx2+y1+Z1=—2,21஻;Bᐳ´:;QH=;J=I,/.z-x=±y,»z—f,x+y+z=l,zz=l,x+y=L22x2+y2+z2=x2+(—-x+—=2x2-x+—XG0,—U)4222223J_x+y-+z£892*ெIlÀz-x=-y,x=z+y,x+y+z=lx=5;z+y=5(\\I1x+y+z~=z+——z+—=2z-z-\ze4U)4231zpMY+y2+z2ḄÃÄ_o2_311ᦑJᫀLM_o2._ூUV௃ᑭᵨ]☢ef0ÈÉᔣ`ÊoḄᐵ;ᔣ`ᐵwᣚᡂᦪᐵ;Äᜐᳮᔣ`q⚪Ïᵨgy;Ð⚪L~⚪;28.(4,-K»)ூᑖ᪆௃¬U஺2Lᙶ᪗ÕU;ᑖÖ¬GG.OzE,஺2aLX;µZÛÜÝÞoßàᙶ᪗஺2-ṺZ,â//(zn,n,2)(0+/=i;â]☢M/GḄyᔣ`=(x,y,z),rçè;â]☢GFBḄyᔣ`3=(஺,ê,c),rç5,â]☢RV"Ḅyᔣ`Lî=(0,0,1),JᫀQ28⚓;S58⚓

38ᑭᵨᔣ`ᜳàð/cosa=cosñ,ò;/tanc,ᵫ-e$4;õ3;;/tan/?,ᐭtana-tan¡᦮ᳮ/JᫀூC௃CM¬UaLᙶ᪗ÕU;ᑖÖ¬Lx;y;zÛÜÝÞoßàᙶ᪗஺2Bøùᡠ¬Nõ0,—l,2,Gõl,0,0,Eõ0,l,2,â/7õ,”,2õ0<᪷<1,B1<஻<0,/+஻2=1;AW=õm,n+l,0â]☢N”GḄyᔣ`ü=õx,y,z,ᩔ=õB1,B1,2,ü=õᑡ஻+1,0m-GN=0[-x-y+2z=0Bᵫÿ_______/c'”=;<=-2JmNH=0|/nx+(஻+l)y=0☢GF”Ḅᔣ஻=(a”,c),FH-(mjz-1,0),>=(-1,1,2)n-FH=0[ma+(n-]]b=0~1m+஻-1ஹᵫ_____.\J஻=-------2Jn-GFߟ0-a+஺+2஺=0ஹ☢FNHḄᔣ%E=(0,0,1),ᑣm-n-1cosa-cosQn,0=/?l)25m2+5(஻+1A-2஻z(஻+l)/ஹ2o(m-n-j(஻+l)+-+4ᵫz2Jm2+(n+l]2ᡠ1tana=3—J~J-\-n-m1-n-m—cosi/?=ccq/77.k\=---------------------J(஻1)+B+(4'/(I-4+5/?z2ᡠ1TanZ7_2j(l_")2+'/,1-n-m2₹+(n+lf2j(l-஻)2rrH+>2IJl+஻2y/2y/\-nᡠ1tana—tan/=3~~F+M——'ߟ---=---7---r--------\-n-in7n-(n+l)1-n-mJᫀL29⚓N58⚓

39=20f--1-/—+-,---"l=4(“--1)ஹ—஻<+—/?<+஻ᦑJᫀ%PQ4,”ூST௃V⚪ὃY☢ZḄ[\]Ḅ^ᔣᜳZ`aᦪcdeឋgὃhijᳮlmnoelmpqr⚪.29.[1,3]ூᑖ᪆௃ᵫuv^12=—gwᵫ▨+y=6ᑮ/+V-.=3.ᯠ|ᑭᵨᣚᐗᑖ^1-yḄᨬᜧ]ᨬ]ᓽ.ூ௃P•.•1,y=1,[1ḄᜳZ%120஺——1Y.C\«2=--,4+,=+=>/2+y2<=6,ᓽX?+V-=3.3=X?+V<22-xy=xyᓽ43.f••-*2=,Q-*2=4+/+=53+2K=3.JᫀL30⚓N58⚓

40X+y="ᑣ(X+f+J+2xy—f2,t23++2=ᑣ=---1,2=J(x+»<+y+xyY.<Ḅ¡]£¤[1,3].ᦑJᫀ%P[1,3].ூST௃¥⚪ὃh☢ᔣḄᦪcdeὃhi¦ᓄ¨©,ᑭᵨᣚᐗ^ªᦪḄᨬ],pqr⚪.30.75ூᑖ᪆௃ᑭᵨᔣḄB«de^¬4ᓽ¬=,®+*®dᵨᔣḄᦪcd336e^¬®wᑭᵨ¯¥°±a^¬®Ḅᨬ]ᓽ¬I®IḄᨬ].ூ௃Pᵫ⚪v²³´µABCOḄ¶·᝞¹P᮱=ᦇ¼.AF^AD+DF=AD+kDE^AD+k(DC+CEy—.1ߟ.-DC=AB^CE=-DA,JᫀL31⚓N58⚓

41ᑣ/=½+4¾+—AÀ2ᡠ1AF=kAB+ADߟߟkAD=kAB+2—,—.5—•ÁAF-AAB+-AD,6k=ᑣᨵPL1,5P%=/=1<5,••.|AF|>5,åæåPç¾A=|||®AÞ¡±è,é|Ḅᨬ]%⌲.ᦑJᫀ%P.JᫀL32⚓N58⚓

42ூST௃¥⚪ὃh☢ᔣḄëᵨìᔣB«deஹᔣḄᦪcdení1dᵨ¯¥°±a^ᨬ]ὃh¦ᓄ¨©noelm.31.ᔊூᑖ᪆௃᝞¶ᡠïðñᙶ᪗ôᑣAQ1,O,3Q1,ÌCᙠᓫøᙊú¦ᓄᑮ|ULU|1lULU,1z.uum..iim.x11Ì|ᑗ+ýþ஺|=2Q|ÿ+CᙠG-.)EJᨬCᙠG5,_~,ᨬᜧᑮᫀ.ூ௃᝞ᡠ!"#ᙶ᪗&ᑣA)1,O,,1,@,D^-pOj,Cᙠᓫ4ᙊ6.r1r1rr/9:;r.imr,1.inn,ᑣc+5a+-\c-b\=\c-OD\+-\c-b\=\CD\+^BC\,Iz@x2CC)x,y,£)/«,஻HI|CE|=21KI,ᦑ+)y-஻y=4x+-+4/N\2.uuir.1.uLnf,17.uun..mn.᦮ᳮᑮ4+4%=2X%—2஻y+Z2+[2,ᦑ\)2,0,|஺஺`5a஺`:)|஺b+|஺cdBCEghᐳjᓽCᙠ£)g,mᨵᨬo:qr=6NdcᙠG)g—t`ᨵᨬᜧog)|u|+|u|=vwo2)|xy+|BC|2|=)2CC,2+EBf<)42+)2\{=28,ᓽxy+BC|2<14,|x|N}|«∅2Ndr=|mᡂ#.6ᡠo@6,ஹ:.ᦑᫀoᫀ33⚓58⚓

431/|UL«|{|\⚪ὃᔣḄᡠᓄo5(|CE|+|CB|)⚪Ḅᐵ¡.2532.——16ூᑖ᪆௃CK=3¢K=£¤+3஺-2)/=4¤+(1—2)KcGஹBஹ஺ghᐳjᑣ`¤+3(1-4)¥4(/1€/?)Ḅᨬᓽ|K|Ḅᨬom⊤!Aᑮ8D§6Ḅ2¨o©᪷«[¬ᐵ&®=?,|BC|=7O°᪷«᩽ᓄឤm³´•¶ᓄᡂ|Ky-·y¤¸[¬ᐵ&|´:Ḅᨬᓽc஺ூ௃V|/IAB+3(1-A)AC|=|/IAB+(1-/I)x3^cl¹CK=3/AG=2AB+3(l-/l)AC=AAB+(l-/l)ADK•:4+(1-º)=1,GஹBஹ஺ghᐳj,¤+3(1-;I)ṹ(4wR)Ḅᨬᓽ|¼rḄᨬo½.ᫀ34⚓58⚓

44AᵫcdKK|K|ᨵᨬt,À,.,AB=3,AC=1,AD=3AC=3,3g_714•-------/QᓽZABD=ZADB=—,NBAD=-,**sinZABD=sin==3332ᵫÁ¶ᳮÃ2=Äy+ᓽy_2¥5ACcosZBAC=7»CMoBCÅhᵫ᩽ᓄឤm³PBPC=I^PM-^BCÆÇ+gr=H-M=lM-r.•.d|Ç|ᨬ´.¶ᨵᨬoPo§AS6ÈÉh,d´´´|ᨵᨬ஺ᑣ|CE|=|AC|sinABAC=tCPMLM¸h஺ÊCE_LABËhEÀ•NPM//EC,PMoÌ8஺£ḄÅ4j,/.|PM|=l|C£|^oᓽǶ=,ᓟᵨ-1=-25o1625ᦑᫀo——16ூh¿௃ᫀ35⚓58⚓

45⚪ὃÏ☢ᔣghᐳj¶ᳮÑ᩽ᓄឤm³ḄÒᵨ⍗ᑮÇÔÕ&ᦪḄᔣXZc×ØØᔲÚᐸÅÔᔣᣚᡂÝᔣÞK&ᦪßᡂ¶°ÒᵨÏ☢ᔣghᐳj¶ᳮ஺⚪àËá⚪஺733.4ூᑖ᪆௃×Aoᙶ᪗âh"#Ï☢ãäᙶ᪗&CA8=2,cPhåæÞKcC•JTP(2cos^,2sin0),0G0,—NᑭᵨᔣḄᙶ᪗Òc᪀⌼êë.2sin8-2cos஺A=-------------------------------,2cos9+sin஺6ìᓃî¹16+2sm20ïrᡠ³ð᦮ᳮo^—ñ33cos29+4sm29+5pi-2cos8+sin஺16+2sin26IT,Oe0,-:ᑭᵨòᦪcd8sin26—9cos2஺=—1,3cos26+4sin2஺+52j/)஺ᨬᑭᵨrägäóᦪÏêᐵ&c᪀⌼êësin26,cos2஺ôᐭcᨬ.ூ௃×Aoᙶ᪗âhc"#᝞öᡠ!ḄÏ☢ãäᙶ᪗&CAB=2,ᑣA(0,0),8(2,0),C(2,2),0(0,2),£(1,0).-.AC=(2,2),DE=[1,-2)ᵫ⚪ÉcPhåæêëox2+y2=4(x>0,y>0)ᫀ36⚓58⚓

46IT_______CP(2cose,2sin8),0G0,—/.AP=(2cos0.2sin0)º_2sin஺-2cos஺2=%+2஻cos஺2cosJ+sinJᵫᐗ=4ø+஻K:ccoc.ù1c2=-24+2஻sin9_3ஹ2cos6+sin஺9(sin0-cosBp9-(sin6-cos᜛)24(2cose+siney(2cos6+sin6)2(2cos0+sin8+sin28_16+2sin263cos26+2sin2஺+û-3cos26+4sin28+52216+2sin29C/(e)=,Oe3cos26+4sin26+54cos26(3cos28+4sin2e+5)-(16+2sin28)(-6sin2஺+8cos2஺)•r(e)=(3cos26+4sin26+5)212+12(8sin2^-9cos2஺)(3cos2஺+4sin2஺+5)2•d8sin26—9cos26<—l/'(஺)<0Nd8sin26—9cos26>—1,f(<9)>0:d8sin26-9cos26=—1,/)஺ᨬv0e0,^/.2^e[(),7t\sin20E[0,1]8sin2஺9cos2஺¹1sin2“3=——2029ᵫ

47ூ௃⚪ὃ☢ᔣᙠḄᵨᑭᵨᦪ!"#ᦪḄᨬ%&⚪'"⚪ᐵ)*+,-./0☢12ᙶ᪗5Ḅ678&⚪9ᓄ;#ᦪᨬ%Ḅ!"<=ᑭᵨᦪᩭ?@ᨬ%ABḄCDEFG⚪.34./l+vூᑖ᪆௃K1LḄ6M;N=P+1ὶ01LABḄ6MVWᱥLCḄ6Mᑡ[\]@ᳮᔠ₹=a=B[AḄbᙶ᪗ᯠdᑭᵨᦪ![WᱥLCᙠAᜐḄᑗL6M,h![MḄᙶ᪗ᨬdᑭᵨjkḄlmn7![MoḄpq.ூr"௃KAs%,yvஹWᱥLCḄᯖ;os஺,1v,K1LḄ6M;z={+1y=Ax+1ὶ01LABḄ6MVWᱥLCḄ6M2~yB2-4"4=0x=4yᵫ\]@ᳮB᳝+%2=4k,஽=-4.ULffllUUUUIUUU]4/=s—᳝J—yv3s,QAb=%FLB,•᳝4ᐗ2,•W=^^᳝X]X=~~~7-^j2=14,B~=4~.2WᱥL஺Ḅ#ᦪ"᪆7;y=?,!By'=5,="fvᓽy=¥¦ᑣWᱥLCᙠAᜐḄᑗL6M;y-My=-1x_¨2(Cஹὶ0X,X,"B.2%,ᡠ“_iy=—X-------12%)24y=-]®¯‘ᓽ±-zsTH´+2+?/+2+=µ+'ᦑᫀ;4+/Iᫀ38⚓58⚓

48ூ௃⚪ὃ1LVWᱥLḄ¸ᔠ&⚪¹ºᑮᑗL6M¼ºjkḄlmn7Ḅᵨ½F1LVWᱥLḄ¸ᔠ&⚪¾81L6MVWᱥL6Mὶ0ᑭᵨ\]@ᳮK=!¿ÀÁ!"ὃÂÃ+ÄEFÅ⚪.ூᑖ᪆௃ABDM,.MÆMH//DEÇDF,ACᑖÈ;G,H,ᑣᵫP,C,EÉÊ,PᙠLËGHÌÍÎsᒹÐÑv![ÑG,H½Ḅ2ᓽÉ!".ூr"௃ABDM,.MÆMH//DEÇDF,ACᑖÈ;G,H,᝞Óᑣᵫ==—1Ô+ADE=DM+Õ᮱ÉÊ,PᙠLËGHÌÍÎsᒹÐÑv3———8—4——1—►——1×PVGØᔠÙ᪷Û஺P=r஺f'=2r஺C+—r஺E=——஺C+/l஺E,ÉÊ/l=■!■,×p93321414VHØᔠÙᵫP,C,EᐳLÉÊ—§+4=1,ᓽ4=ᔠÓÞÉÊ4esa,§.ூ௃⚪ß⌕ὃNᔣḄLឋÍÃâ¿ÁãäÞ¿ᑣåᐳLᦪÞᔠḄæç6¿,EFG⚪.,1836.—5ூᑖ᪆௃᪷Û⚪KᩩéÉK@=2=s2>0,ᔠ@=â6+s|஻ì=VAஹBஹ£>åᐳLÉ!B2,ï᪷Ûðñ@ᳮ![A3,ᯠd᪷Ûòó@ᳮᓽÉ!".ூr"௃ᫀ39⚓58⚓

49,:CஹDஹPåᐳLÉK@=/l=(A>0),,/PC-mPA+f-mjPB,APD=mPA+f--PB,ᓽôõ=τ)=Y)~A,23öâ஺0÷âøᑣAஹBஹ஺åᐳL2•:CP=9,.PD=6,CD=3,VBC=3,AC=4,ZACB=90°>>,AB=5,KAD=x,ZADC=0,ᑣB£>=5-x,ZBDC^7r-0,•᪷Ûòó@ᳮÉB8s"ùᯅCD2-FBD2-BC2OHcos(ü᜛)=2CDBD6(5-x)Vcos^+cos(^--0)=O,2_7r7^^+ᓃ—=0,"Bx==ᡈ=5()6x6(5-x)571R8஺Ḅ5-1=W.1Qᦑᫀூ௃ᐵ⚪ὃ☢ᔣḄᵨஹ#$%ᳮḄᵨ'()*+,-.*⚪Ḅᐵ/01%=3ᡠ(2>0).37.3+25ூᑖ᪆௃ᑖ᪆1஺ஹPḄ89:1஺ᡠᙠḄ☢<=>ABḄ?஺@A1ᫀB40⚓D58⚓

50OAOB=|OD|2-I,)1IGIḄᨬᜧJᓽ@A*.ூM*௃•.O=4O+4O+4R=4S+4T+U1-4-4XG-R=4O-RY+%UG-[ᓽ\=4]+4^_4+4+4=1`4ஹ4ஹ42°ᑣ4ஹ4d0,ᡠ'044+441ᡠ'gᙠh43஺Ḅjk(ᐸᑁn_|pq1,ᑣ஺ᙠ᝞stᡠuḄvw<=ᑁx<=ᵫMPஹNRஹST~ᩩ'2(~ᑖ'4ஹBஹCᙊ1`ᙊḄᙊᡂḄ<=ᐸ?jABA/gஹBCRNஹACSTᙳ`AP=AT=3M=3N=CR=CS=1,>A3Ḅ?஺ᑣS=pOA=OD+DA>OB=OD+DB=OD-DA>ᡠ'0A0B=(0D+DAj[0D-DAj=0D-DA=|0D|-1,஺஺AS஺|/I=G+i,IImax_04-05=|O^|2-1<(^+1)2-1=3+273.ᦑᫀ3+28.ூ௃§¨☢ᔣ?ᨵᐵᨬJª⚪Ḅ)*«¬ᨵ®§¨¯/“ᓄ”ᓽᑭᵨ☢ᔣḄ´µ¶·¸ª⚪¹ᓄ☢´µ?ḄᨬJᡈª⚪ᯠ½᪷¿☢tḄᱯÁÂÃÄᑨÆÇÈ/“ᦪᓄ”ᓽᑭᵨ☢ᔣḄᙶ᪗+,̪⚪¹ᓄÍᦪ?Ḅ^ᦪᨬJÎJ=ஹÏÐÑᫀB41⚓D58⚓

51Ḅ*ÒஹSÓᨵ*Ъ⚪ᯠ½ᑭᵨ^ᦪஹÏÐÑஹSÓḄᨵᐵᩭ*Õ.38.3ூᑖ᪆௃᪷¿Ö+×ØḄᨬÙJÖ¯£|ÍᐭAᐵ3Ḅ¯ᐗÈÝÏÐÑᑭᵨÐÞ@'>ᑮᑨÆ1à=4(1@24(2"■3¯1)=0,ᯠ½0ãxåḄSᔣᔣ1åSᔣᔣ<=ÙᑣAᐵ3,y)ḄçèSÓᑭᵨéᱥḄ%·¸ᔣë¹ᓄìí,î,ᨬÙJ.ூM*௃%+24ï+2ð¯120,ᡠ'A=4(ñò_4ôᨴ4-1)=0,ᓽ\2.....e,e)¯20263+1=006÷åḄSᔣᔣe2åSᔣᔣᡠ'=xq+ye32úḄᙶ᪗(x,y),ᡠ'/¯2y+l=0,A/=2஺-7)ÇÖ+31¯@+Ö¯ü=|(l,3)-(x,y)|+|(x,y)-(0,l)|,_ý=2(y-g)éᱥf=2yᔣgᓫᡠᯖᙶ᪗(0,1),y=0,ᡠ(x,y)U(0,1)Ḅ!ᑮy=0Ḅ#$|(1,3)—(x,y)|+|(x,y)—(0,1)|=|(1-%,3-ᑘ+32|3-,+3=3,-./-0=1=12,3ᨬ56.ᦑ9ᫀ;3ூ=௃ᐵ@ᔣABCḄD⚪FGHᨵᙶ᪗2ᑭᵨLMNOPQRSᨵᙶ᪗2Tᐭᙶ᪗MNVW,XYBCḄᨬ6D⚪FG◤⌕\ᓄ!^_Ḅ,ᡈὅᑮḄ$D⚪ᑭᵨbcLdVW.39.জঞটூᑖ᪆௃k5(mn)0(o%)ᑭᵨpqrᑖs⊤uvIMGஹIICB\\,IIABW,9ᫀ{42⚓}58⚓

52ᑭᵨIIACII+IICBll=IIABW~ᔠ6$NvoFFo0.%-%%-%»°ᡠm•=-•40,ᓽ90°2ᵫllACbllCBll=llABll:k-%I+1%-yI+|஽F,+1%F=k-I+1%-|,ᵫ6$N;|X-X,|+|A-X|>|A-X|,32?2I1%-|+|%F^'2-|,-./-F᳝!F20.nFnF%202$¢ᡂ¤ᡠ.=oF஽Fᜩ+%—¦%F02°ᡠ5.=-W0,ᡠcosNACB=§ᔣW0,ᡠ90°

53ூ=௃ᐵ¶=;·⚪W⚪Ḅᐵ¶µᑭᵨ6$NvIIACII+II=A8IIᡂ¤Ḅᩩ¹(FX)(%Fᜩ)^0.(%FX)(%-%)"º\ᓄCACB=-ACCB஺ᐳᡠÂ//F5(-x()+'!)=(%—5)(X0_])᦮ᳮ*0%_2%_*0+]=0ᵫAQ-CP=(ᜩ),—x஺+1)•(—2,No)=—2x—jQ)y+%00c1,1o=-2x--y-x+l+y=-3x+—^+l,000000Óᵫx஺%—g%—%+1=0,/e[1,2],%e[0,1],/(%-1)=g%F1ÓÖ%-140,ᡠ(%F1)%ᐵ@ÚᓫÊ⌴Üᡠ2(%-1)4%(%-1)<(%-1)•1,12ᡠ2y0-2Wὡ%-1W%-1,W04%<§9ᫀ{44⚓}58⚓

541_1_j_233111331131122y-l2y-l22y-l2ஹb21-%2bá'â'000311ã7=1Fåæçè0,ãè=S♦S+/ᦪyᙠ(o,ஹ6)Üᦪᙠyᙠ(8,+oo)ìᦪ1311-f=l_y°eq,lñ2ò=51+5x1=2,ᡠ஻Xèmax=-2.ᦑ9ᫀ;-2.ூ=௃VWᔣAᙶ᪗÷RD⚪ḄFGøù;1ஹᔣAḄᙶ᪗ᓄ;ᔣAḄᙶ᪗÷RúᔣAḄឋ÷Rᵨᙶ᪗ûüýþÿᔣᙶ᪗ᐰᦪᓄᦪᔠᩭ☢ᙶ᪗!⚪#ᓄ$ᦪ%2ஹ()*+,-.ᙶ᪗/ᔣḄᙶ᪗1⌕3ᑭᵨ67ஹ87ஹᦪ97ᑣ;<=>?ᨵᔣABCDEḄᙶ᪗ᑣFᐜ.HᔣḄᙶ᪗.I+J⌕KL*+,-Ḅᵨ%3ஹᝯᵨOPᦪ7.ᦪ/ᑭᵨᙶ᪗.ᔣḄQR⊤TUVA.HQRᔣWX⊤TḄᔣḄᙶ᪗YᵨOPᦪ7.Hᦪ.41.3^ᫀ`45⚓b58⚓

55ூᑖ᪆௃g£=jklm=n,7=lqPrsPḄE஺uP4ḄᚖA/,ᚖy$KᑣPK=4,ᦑE஺ᙠPA/}ᦑ|2-"|Ḅᨬᓽ$E஺ᑮA/Ḅ\DH\,ᵫ.E஺Ḅ$EA$ᯖEA$/ḄᱥA.᝞ᙶ᪗ᱥAḄ᪗*+V=-4x,3HP,A,8Ḅᙶ᪗ḄJEM<A40uᱥAḄᑗAᑗEᑖ$஺°,,ᑗA¢x£EEᵫᔣḄᨵ_________pn____.PD=xPA+yPB=xPA+2y—=xPA+2yPM¥¦E஺E4§ᔠ3x+2yᨵᨬᜧᨬᜧ$ᙌ..HᑗARE*+r.ூ®I௃I/᝞,g£=¯°=¯,2=n,ᱛ=²ᵫ|2|=>|=£/=2,ᑣ—.ߟ.1COS=5,ᦑNAP8=60°.ᵫ7"=8,ECu/¹ḄᚖA/ᚖy$Kᑣ|PK|=4,ᦑECᙠPA/}.ᦑ12-1Ḅᨬᓽ$EOᑮA/Ḅ஺஻.ᵫ|=|£ᑘ.ᦑE஺Ḅ$EA$ᯖEA$/ḄᱥA.AKḄJE஺$½Eᙶ᪗ᑣᱥAḄ*+$V=-4x,P(-3,O)M(-l,O),B(-2,>/3).PBḄJEM<AAMuᱥAḄᑗAᑗEᑖ$ᑗA¢x£EE.ᵫ2=Â+)°ᓽl=%Ä+ů=ᐝ¯+2?È=ÉÊ+2VCᦑ¦E஺Ë^ᫀ`46⚓b58⚓

56E3x+2yᨵᨬᜧᨬᜧ$ᵫ[I"AIgᱥAÅ=U4%}ḄE஺஺(Uᡝ,2)ÎEᜐᱥAᑗA$x+)-*=oÐ%=L=Gᑣf=5ᑣᑗAẓ:X+Ó-3=0,ᦑEE(3,0).Ôl_2Z^=3.(x+2y)\J/max(-1)-(-3)ᦑ^ᫀ$/3.ூEÕ௃ᐵ×EEÕ/Ø⚪ὃÚ☢ᔣḄAឋI⚪ᐵ×Üuᙠ☢}uHqPḄP,A,BÝEᯠr᪷àᦪáḄPâHCEÜUᩩAY᪷àᱥAPâH஺EÜᱥA☢ᙶ᪗HᱥA᪗*+äP,A,Bᙶ᪗ᱯÜᑭᵨ?ᦪᑖ᪆BC=—ᓽE=FG3H8+IJᨬ;112161611!ᫀK47⚓M58⚓

57/——ஹ2/——I6Z,I/L\2__ᡠ38+P=16--+2a-b\--4-4=-------—+4=(A/3|&஻.=±4'τmin(16JI16Q07R᙮Ḅᜳ┦ᡠ3£/=4,ᦑC=—G2=—XY164F21FF^■(7+^|c|cos᜛=1?+Y.4—g1cos0=3-2^/3cos0ᓽ\=C+—6F,/?—0cos6w[—1^ᡠ3[3-2_3+2`|ᦑ!ᫀaজFYYঝ[3-26,3+2c]ூef௃g⚪ὃijᵫk☢ᔣnḄḄᨬopᦪqὃij3k☢ᔣnḄrstᑣஹᦪnvrswxyᓄᦪoᨬz⚪{|}⚪.135A/743.—^!—214ூᑖ᪆௃᪷⚪ADCᨵFᑁ60஺ḄQ⍝Ḅ,ᡠ33ᙶ᪗z⚪ᙶ᪗ᓄ_`so&.ூ%&௃&a.k☢ABCOAB=BC=2CD=2,ZABC=60°,ZADC=90°,>45஺2ḄᙠR/DAZXaAC=2,CD=\,ᡠ3Z4C£>=60°TfTfBE=EF=FG=GC!ᫀK48⚓M58⚓

58.♦.E,EGBCḄᑖe.᝞ᙶ᪗aᑣ:AO,V3,B-1,O,C1,O,¡£¢£*஺,஺,ᑣ,ᡠ32Ah¥+¦§¨P©0,ᑣ—IWXWI,**•PAQPC=(-x,>/3j^l—x,O)=x2—x=ªᯠx=5H61¬3ᨬ;H᜛(®஺)ᦑ!ᫀaᜐ.214ூef௃g⚪ὃik☢ᔣnᙠ±²z⚪Ḅ³ᵨ´µᔣnḄᦪnv¶ᔣnᜳḄ·¸¹ºz⚪ᙶ᪗ᓄF»¼½Ḅoᡈ¿ÀḄ&⚪Át,HὃiÂEḄyᓄÃĶᦪÅᔠÃÄ.44.112ூᑖ᪆௃!ᫀK49⚓M58⚓

59ᵫᩩÈÅᔠÉ,+X+e|=5+7+,2,F,F,=1Î=07ÐFZ=Z+Z&=4+7,ᑣᨵ,43,◌W7,¢3¢11Î+2+8=஺ᯠ_²+Ö+©=Î.;,Ø,ÙÚØ7FÛ12.ூ%&௃0®=,==Ý=⇵=,=17+Z+4+Z+N+Z=6,123456ᡠ3k2+ᒹ+4|=k1+4+஺5ÚâF,Fâ=1=ã3äᑮ᝞æ%஺5+q.஺6+½E+஻2஻6=²+⚗,(7+2)4=4+%4=4+஻4&=%+஺6,ᑣᨵ,W3,,47,,411,Î+£+£=ë,᝞æᡠ3ᨵ²+ì+í=Î.;,_î,,F,¢,7-,=12,=ã3äᑮ᝞æ!ᫀK50⚓M58⚓

60ᦑ!ᫀa1;12ூef௃g⚪ὃiḄk☢ᔣnḄ5òtஹɶᦪnvḄ³ᵨὃijÂEᑖ᪆óô¶yᓄóô{|}⚪.ூᑖ᪆௃(1)᪷ᔣnÉõM+5)3M.|2+,÷Iᑮᐵ|IúḄÉ,ᓽ!ᫀ;(2)᪷ûᔣnô¶ᔣn5,ᔣn2Ḅᙶ᪗ᐭᓄ¨ᑭᵨ¿ÀḄ±²üýᡂFíeᑮÿḄᡠḄᡂᑮḄᵫᨬ.ூ௃(1)ᵫ"#=4&5|=3,஻2+.=/0ᵫm-c)[Xb-c)=a\$-0ᙠ+5)+/=-2,c15-7ᐭ9:|?|+—=c\Xa+b)^c\x\a+b|=4|c|,4ᓄ>4|c|2-16|c|+15<0,35=4ᱏ#22(2)CD஻,5ᓫFᔣHIJK=0,L1=(1,0)M=(0,1),LN=(x,y),ᑣ^_ZJ=(x_l,y),0_2B=(x,y—2),XᫀZ51⚓\58⚓

61CD|c-a|+c-2b=V5,ᓽ+y2+^x2+(j-2)'=5/5>ᓄ>2x+y-2=O,(OWxWl),ᡠ^_+2a=J(x+2`+y2⊤b2x+y-2=0,(0WxW1)cḄᑮ(2,0)Ḅ|2x(-2)-2|_6>/5ᡠ^d+2e=d

62unV22+l5f+24J”(-2)|=3,ᦑXᫀDh||i៫,3ூk௃ᑭᵨᔣHᦪHoḄpᔣH/qrᓽ2Ms|£|M|uᔣHv⚪xyᙶ᪗ᓄᜐᳮ~Ḅv⚪ᓄDḄᨬv⚪.46.3743ூᑖ᪆௃b274(I)ᑭᵨ/qr:PF/ᨴḄᨬᜧ=ᐲ,xM᳛e=£=J1—=9;a\a27UUUUUU(H)A஺ᵫ9:2஺064=0,஺AᐭᑭᵨFឋAF,LAF,ᯖ44ὡED¡¢£ᵫ¤ᙊp¦§¨ᳮ©ᔠ¤ᙊ᳛,2uuiirIUUITᓽMᐭ«,¬ᐭx;Iூ௃L2a,2bᑖ¯D¤ᙊḄ°°±°XᫀZ52⚓\58⚓

63|P^|2+|P^|2-4C2_2h2t²i´ᙠµ,cos/ὡPF221Pὡ_|᜜=▀_|ᵨ-.■\PF\-\PF\1ᵨ?0ᵨ=a2,»I¼»½ὡ|=|P¾=aqÀᡂÁᓽ»{2F/ᨴḄᨬᜧ.•.ᴊ1=—Ä-,ᓽÅ=Æᑣ᳛a249a249/——..\UUUUUU²II´AB஺ᵫ²஺4+஺6ு64=0,ᓽ20஺•24=0ᑭu2+v2=4c2ᵨFឋA£_LA6LÌὡ|=஻|AE|=u,Ï_u+v=2a5ac--786u=au=as[77.,./t=aᡈ&ᡈso843vÄav--a77534ᦑXᫀDuᡈ743ூk௃×Øk⚪ὃÚ¤ᙊḄ᳛,᳛ᙠᙊ┵ÜḄὃÚÝÞß,à᳛ᨵ^âãäåæজèMac,éMeuঝ᪀⌼஺cḄîïrMeuঞñᵨ᳛Ḅp^¦ᙊ┵ÜḄpᩭuট᪷õᙊ┵ÜḄöp.15?ூᑖ᪆௃øÌù0,ᑣú=\LüḄᜳa,⃭Ḅᜳ6,ᓄ>ᑮ2v+4£©ᔠᔣHḄÿ,ᓄᑮ3+2|+|2-+#2+|"+1||cos஺ᔠ!"#$ᓽ&'(.*ᫀ,53⚓$.58⚓

64ூ0(௃ᵫ⚪4$5wுo,ᑣw=1,8Ḅᜳ;a,<2Ḅᜳ;e,ᑣ=,=•@ATdWcoscr$=|Fcosa4ᓄ2IJK+஺ᡠM—3|+2|+ᵨ"ᵗ+#2P+r__R_S\|“+2|+ᵨT~375-3-----=------“XYZ[Ycos8=lZ$W=7!^_"`$ᓽ5ᦑ*ᫀbcdEூef௃⚪g⌕ὃjkᔣmḄᦪmoḄp$Mq!"#Ḅrᔠsᵨ$Ḽuὃjkvᳮxpyz${⚪|}~ᜧ$|⚪.ூᑖ᪆௃জᑭᵨᳮᓄ;$ᔠ;R#ᓄ$ᓽ&*ᫀ.ঝ$஺AA8C᜜ᙊḄᙊ$᪷ᦪmoḄ$ᑭᵨᳮᓄ;$ᓄᓽ&*ᫀ.ூ0(௃জQ2c•tan5=Z?•(tanA+tanB),2sinCtanB=sinB(tanA+tan3),ᵫsinC=sin[/r—(A+B)J=sin(A+B)=sinAcosB+cosAsinB,¨ᐭª#$sinAsinB2[sinAcosB+cosAsin4]--------=sin«cos8cosAcosB2fsinAcosB+cosAsinB]--------=---------1--------cosBcosAcosB2[sinAcos8+cosAsinB]•cosA=sinAcosB+sin8cosA,*ᫀ,54⚓$.58⚓

652sinAcosAcosB+2cosAcosAsin5=sinAcosB+sinBcosA,2sinAcosAcosB+2cosAcosAsinB-sinAcosB-sinBcosA=0,sinAcosB(2cosA-l)+cos/4sinB(2cosA-1)=0,(2cosA-l)(sinAcosB+cosAsinB)=0,(2cosA-l)sin(A+3)=0,(2cosA-l)sinC=0,¬bsinCwOᡠM2cosA-l=0,ᓽcosA=—,2¬b┦;®;$71ᡠMA=,3ঝ᝞ᡠ°,஺±A8C᜜ᙊḄᙊ$—>T—»->,cos5AB-AOcosCAC-AOᑣ----------------1----------------------------2sinC-22sin3-2AOAO_cosB1c2cosC1b~~2sinC22sinB5´_cosBsinCcos3.2cosC.2n=-------smC+--------sinBsinCsinB=sinCeosB+cosCsinB=sin(B+C)=sinA*ᫀ,55⚓$.58⚓

662…nnGᦑ*ᫀbc—■¶-32ூef௃⚪ὃjᔣmḄᦪmoḄsᵨ$ᳮḄsᵨ$ὃj·ᓄ¸¹Mqºyz$»᫏⚪.2749.3——11ூᑖ᪆௃T1—>2Tᵫ&=ᯠ¾¿Àᜐᳮ$ᔠ¿☢ᔣmḄᦪmop$(ÀÃᓽ&¶Ä=R/¨ᐭG.Ak=4,ᓄ᦮ᳮ¾$¨ÆÇÈᦪ$(ᐵXḄÀÃᓽ&(.ூ0(௃(c•'s)=2/53$,8ஹDஹC®eᐳÍ$-1—2-/.AD=-AB+-ACf33T1T4f]2ff¿ÀcIA£>|2=-|AB|2+-|AC|2+2x-x-|AB0AC|cos60°,993337|44->1•.—=-|AB|2+-x4+—x2x|A8|x—,99992—(cAB=3ᡈ-7(ÏÐ)..•TT•AD\JAE=4*]T2T-*T/.(-AB+-AC)L(2AC-AB)=4,]-2J_O->tᓄ᦮ᳮ$—LAB+'AC+~ABD4c=4,33312A.2-2_.&%/Ic27/.——x9+—x4+------x3x2xcos60=4,(Ó=—.3331127ᦑ*ᫀbc3,yy.ூef௃⚪ὃj¿☢ᔣmḄÔஹᔣmḄÕÖ×pMqᔣmḄᦪmop$ᑭᵨᑮk¿☢ᔣm*ᫀ,56⚓$.58⚓

67ᳮ$ØÙᵨk¿À×(ÚÔÛÜ⚪$ὃjÝÞḄᑖ᪆yzRpyz.]_1350.6Tூᑖ᪆௃&/840=120஺$ᑭᵨ¿☢ᔣmᦪmoḄ'4Ḅß$ᯠ¾Me8bᙶ᪗âe$BCᡠᙠäÍbxåæç¿☢ä;ᙶ᪗è$8eMéx,0ê,ᑣeNéx+l,0ᐸ»0WxW5,.ìᐵxḄíᦪ⊤ï#$ᑭᵨðñíᦪḄឋó'ì.ìḄᨬõß.ூ0(௃=:.AD//BC,..=1800-ZB=120°.ö÷=4ø.÷=4ùùcosl20஺MeBbᙶ᪗âe$BCᡠᙠäÍbúåæç᝞ûᡠ°Ḅ¿☢ä;ᙶ᪗èúü$BC=6,..Cé6,0ê,•.1Aᵨ=3,ZABC=60°$,AḄᙶ᪗bAߟ►1ߟ►•ý:A£>=—8C,ᑣ஺,8Méx,஺ê$ᑣNéx+l,Oêéᐸ»0Wx<5,6*ᫀ,57⚓$.58⚓

68DMXDMDNÿᡠx=2■•ᨬ.2113ᦑᫀ——.62ூ௃⚪ὃ!☢ᔣ$ᦪ$&Ḅ()ὃ!☢ᔣ$ᦪ$&Ḅ*+,ᙶ᪗/)ὃ()01,3456⚪.ᫀ758⚓958⚓

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭