平面向量重难点解析

平面向量重难点解析

ID:47607201

大小:1.54 MB

页数:20页

时间:2019-09-28

平面向量重难点解析_第1页
平面向量重难点解析_第2页
平面向量重难点解析_第3页
平面向量重难点解析_第4页
平面向量重难点解析_第5页
资源描述:

《平面向量重难点解析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、......word...专业技术行业资料......平面向量重难点解析课文目录2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例目标:1、理解和掌握平面向量有关的概念;2、熟练掌握平面向量的几何运算和坐标运算;3、熟悉平面向量的平行、垂直关系和夹角公式的应用;4、明确平面向量作为工具在复数、解析几何、实际问题等方面的应用;重难点:重点:向量的综合应用。难点:用向量知识,实现几何与代数之间的等价转化。【要点精讲】1.

2、向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示-----(几何表示法);②用字母、等表示(字母表示法);③平面向量的坐标表示(坐标表示法):分别取与轴、轴方向相同的两个单位向量、作为基底。任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,。;若,,则,3.零向量、单位向量:①长度为0的向量叫零向量,记为;②长度为1个单位长度的向量,叫单位向量.(注:就是单位向量)4

3、.平行向量:①方向相同或相反的非零向量叫平行向量;......范文范例学习参考指导.............word...专业技术行业资料......②我们规定与任一向量平行.向量、、平行,记作∥∥.共线向量与平行向量关系:平行向量就是共线向量.性质:是唯一)(其中)5.相等向量和垂直向量:①相等向量:长度相等且方向相同的向量叫相等向量.②垂直向量——两向量的夹角为性质:(其中)6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。平行四边形法则:(起点相同的两向量相

4、加,常要构造平行四边形)三角形法则——加法法则的推广:……即个向量……首尾相连成一个封闭图形,则有……②向量的减法向量加上的相反向量,叫做与的差。即:-=+(-);差向量的意义:=,=,则=-......范文范例学习参考指导.............word...专业技术行业资料......③平面向量的坐标运算:若,,则,,。④向量加法的交换律:+=+;向量加法的结合律:(+)+=+(+)⑤常用结论:(1)若,则D是AB的中点(2)或G是△ABC的重心,则7.向量的模:1、定义:向量的大小,记为

5、

6、或

7、

8、2、模

9、的求法:若,则

10、

11、若,则

12、

13、3、性质:(1);(实数与向量的转化关系)(2),反之不然(3)三角不等式:(4)(当且仅当共线时取“=”)即当同向时,;即当同反向时,(5)平行四边形四条边的平方和等于其对角线的平方和,即8.实数与向量的积:实数λ与向量的积是一个向量,记作:λ(1)

14、λ

15、=

16、λ

17、

18、

19、;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=;(3)运算定律λ(μ)=(λμ),(λ+μ)=λ+μ,λ(+)=λ+λ......范文范例学习参考指导.............word...专业技术行

20、业资料......交换律:;分配律:()·=(·)=·();——①不满足结合律:即②向量没有除法运算。如:,都是错误的(4)已知两个非零向量,它们的夹角为,则=坐标运算:,则(5)向量在轴上的投影为:︱︱,(为的夹角,为的方向向量)其投影的长为(为的单位向量)(6)的夹角和的关系:(1)当时,同向;当时,反向(2)为锐角时,则有;为钝角时,则有9.向量共线定理:向量与非零向量共线(也是平行)的充要条件是:有且只有一个非零实数λ,使=λ。10.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面

21、内的任一向量......范文范例学习参考指导.............word...专业技术行业资料......,有且只有一对实数λ1,λ2使=λ1+λ2。(1)不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量。向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x,y),则=(x,y);当向量起点不在原点时,向量坐标为终点坐标减去起点坐

22、标,即若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1)11.向量和的数量积:①·=

23、

24、·

25、

26、cos,其中∈[0,π]为和的夹角。②

27、

28、cos称为在的方向上的投影。③·的几何意义是:的长度

29、

30、在的方向上的投影的乘积,是一个实数(可正、可负、也可是零),而不是向量。④若=(,),=(x2,),则⑤运算律:a·b=b·a,(λa)·b=a·(λb)=λ(a·b),(a+b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。